基于超声共振谱的结构缺陷无损检测  

Nondestructive testing for structural defects based on ultrasonic resonance spectroscopy

在线阅读下载全文

作  者:辛昊松 郝路 潘永东[1] XIN Haosong;HAO Lu;PAN Yongdong(School of Aerospace Engineering and Applied Mechanics,Tongji University,Shanghai 200092,China;School of Civil Engineering,Southeast University,Nanjing 210096,China)

机构地区:[1]同济大学航空航天与力学学院,上海200092 [2]东南大学土木工程学院,南京210096

出  处:《无损检测》2024年第12期20-27,共8页Nondestructive Testing

基  金:中国自然科学基金(5202T816)。

摘  要:超声共振谱是一种利用超声激励样本产生自由振动反演材料力学特性的无损检测方法。首先利用有限元仿真技术研究结构缺陷位置与缺陷大小对超声共振谱及其固有频率的影响,结果表明利用超声共振谱提取的共振频率可以有效判断出结构缺陷所在位置和大小;然后通过试验得到了无缺陷和有缺陷试块的超声共振谱,并进行比较,验证了利用超声共振谱判断结构是否存在缺陷的可行性;最后对有限元仿真所得的超声共振谱与试验所得的超声共振谱进行比较,验证了有限元仿真的准确性。通过仿真和试验研究证明了基于超声共振谱的结构缺陷无损检测方法具有一定的理论和应用价值。Ultrasonic resonance spectroscopy is a nondestructive method used to test materials by generating free vibrations using ultrasonic excitation.This method can be used to determine the mechanical properties of materials.In this article,finite element simulation technology was used to study the impact of structural defects on the ultrasonic resonance spectrum and natural frequency.The results showed that the resonance frequency obtained from the ultrasonic resonance spectrum can determine the location and size of structural defects.In addition,the ultrasonic resonance spectra of test blocks with and without defects were obtained through experimental research.By comparing the two spectra,it was confirmed that ultrasonic resonance spectroscopy can accurately detect structural defects.Finally,the accuracy of finite element simulation was verified by comparing the results with those obtained from experiments.Through simulation and experimental research,it has been proven that ultrasonic resonance spectroscopy is a valuable non-destructive testing method for detecting structural defects.

关 键 词:超声共振谱 固有频率 结构缺陷 无损检测 

分 类 号:TG115.28[金属学及工艺—物理冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象