基于超声共振谱的点阵结构杆缺失无损检测  

Non-destructive testing of missing struts in lattice structure based on ultrasonic resonant spectrum

在线阅读下载全文

作  者:梁恩辅 孙朝明[1] 沈显峰[1] 孙凯华[1] 何华彬[1] 王国伟 LIANG Enfu;SUN Chaoming;SHEN Xianfeng;SUN Kaihua;HE Huabin;WANG Guowei(Institute of Machinery Manufacturing Technology,China Academy of Engineering Physics,Mianyang 621900,Sichuan,China)

机构地区:[1]中国工程物理研究院机械制造工艺研究所,四川绵阳621900

出  处:《声学技术》2024年第6期803-810,共8页Technical Acoustics

基  金:国家自然科学基金委员会-中国工程物理研究院NSAF联合基金资助(U1930207)。

摘  要:经金属增材制造生产的点阵结构在航空航天、国防军工中的应用不断增长,而与之相应的缺陷检测方法仍然欠缺。现有的工业CT检测方法成本高、耗时长,难以满足对大量点阵结构进行检测的需求。文章基于超声共振谱,采用马田系统分类算法对点阵结构零件的杆缺失缺陷进行了无损检测研究。马氏距离与杆缺失数目呈现正相关,通过调整马氏距离分界阈值的高低来改变检测指标的严格程度,可以灵活地调整对异常样品的检测要求。仿真和实验研究结果表明,所提方法能够根据马氏距离的量值准确地识别杆缺失零件。文中的研究为保障增材制造生产的点阵结构零件的完整性与可靠性提供了参考。Lattice structures manufactured by metallically additive manufacturing have incrementally been applied in aerospace,national defense,and military industries,but the corresponding defect detection methods are still lacking.The industrial CT detection method used currently is costly and time-consuming,and incapable of meeting the detection requirements for a large number of lattice structures.In this paper,based on ultrasonic resonant spectroscopy,the Mahalanobis-Taguchi system classification algorithm is adopted to study the non-destructive testing of missing struts in lattice-structure parts.The Mahalanobis distance correlates positively with the number of missing struts,which suggests that the detection requirements for abnormal parts can be flexibly adjusted by moving the classifying threshold of Mahalanobis distance to change the strictness of the detection index.Simulation and experimental results show that this method can accurately identify strut-missing parts according to the magnitude of the Mahalanobis distance.This study provides a reference value for ensuring the integrity and reliability of lattice-structure parts produced by additive manufacturing.

关 键 词:超声共振谱 点阵结构 马田系统 无损检测 

分 类 号:TB559[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象