检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张延磊 ZHANG Yanlei(Nokia Communication Systems Technology(Beijing)Co.,Ltd.,Beijing 100013,China)
机构地区:[1]诺基亚通信系统技术(北京)有限公司,北京100013
出 处:《智能物联技术》2024年第6期51-54,共4页Technology of Io T& AI
摘 要:提出一种基于机器学习的通信软件缺陷预测方法,通过分析历史数据和应用模型预测,在开发阶段提前识别潜在缺陷,提升软件的质量与可靠性。基于通信软件的复杂性及缺陷特征,定义缺陷密度和缺陷率作为评估软件质量的重要指标。采用随机森林算法进行预测,实验结果表明,所提模型在不同规模数据集上的预测准确率均较高,尤其在处理复杂代码模块时表现出良好的稳定性与健壮性。所提方法为通信软件开发过程中的缺陷检测和质量优化提供了有效的技术支持,有助于降低维护成本并提高系统的安全性与可靠性。This article proposes a machine learning based communication software defect prediction method,which aims to identify potential defects in advance during the development stage and improve the quality and reliability of software by analyzing historical data and applying model predictions.In the study,based on the complexity and defect characteristics of communication software,defect density and defect rate were defined as important indicators for evaluating software quality.The random forest algorithm was used for prediction,and the experimental results showed that the model had high prediction accuracy on datasets of different sizes,especially when dealing with complex code modules,demonstrating good stability and robustness.This method provides effective technical support for defect detection and quality optimization in the development process of communication software,helping to reduce maintenance costs and improve system security and reliability.
分 类 号:TP311.1[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26