Acquisition of acoustic emission precursor information for rock masses with a single joint based on clustering-convolutional neural network method  

在线阅读下载全文

作  者:Peiyao Xie Weizhong Chen Wusheng Zhao Hou Gao 

机构地区:[1]State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan,430071,China [2]University of Chinese Academy of Sciences,Beijing,100049,China

出  处:《Journal of Rock Mechanics and Geotechnical Engineering》2024年第12期5061-5076,共16页岩石力学与岩土工程学报(英文)

基  金:support from the National Natural Science Foundation of China(Grant Nos.52079134 and 51991393).

摘  要:The method for precursor information acquisition based on acoustic emission(AE)data for jointed rock masses is of significant importance for the early warning of dynamic disasters in underground engineering.A clustering-convolutional neural network(CNN)method is proposed,which comprises a clustering component and a CNN component.A series of uniaxial compression tests were conducted on granite specimens containing a persistent sawtooth joint,with different strain rates(105e102 s1)and joint inclination angles(0e50).The results demonstrate that traditional precursory indicators based on full waveforms are effective for obtaining precursor information of the intact rock failure.However,these indicators are not universally applicable to the failure of rock masses with a single joint.The clustering-CNN method has the potential to be applied to obtain precursor information for all three failure modes(Modes I,II and III).Following the waveform clustering analysis,the effective waveforms exhibit a low main frequency,as well as high energy,ringing count,and rise time.Furthermore,the clustering method and the precursory indicators influence the acquisition of final precursor information.The Birch hierarchical clustering method and the S value precursory indicator can help to obtain more accurate results.The findings of this study may contribute to the development of warning methods for underground engineering across faults.

关 键 词:Acoustic Emission(AE) Precursor information acquisition Precursory indicator Clustering-Convolutional Neural Network (CNN)method Rock mass failure Single joint 

分 类 号:TU45[建筑科学—岩土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象