检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李策 LI Ce(School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China)
机构地区:[1]中国科学技术大学数学科学学院,安徽合肥230026
出 处:《数学杂志》2025年第1期81-94,共14页Journal of Mathematics
摘 要:在大规模银行交互系统中,各银行可通过控制与中央银行的借贷率来使自身对数货币储备尽可能地接近样本均值,从而降低系统性风险发生的概率.然而当状态过程与目标函数的参数未知时,无法直接求解随机微分博弈问题得到纳什均衡.本文结合平均场博弈理论与连续时间强化学习的相关方法,构造了一组大规模银行借贷网络中的近似纳什均衡.首先通过求解向前向后耦合HJB-FPK方程,得到代表银行的平均场均衡策略;再通过所得策略的形式,设计出迭代参数的方法用以刻画参数未知时的近似最优策略;最后通过学到的参数,构造银行数量较大时的近似纳什均衡.borrowing and lending rates with the central bank to bring their currency reserves as close as possible to the sample mean,thereby reducing the probability of systemic risk.However,when the state process and parameters of the objective function are unknown,it is not directly possible to solve the stochastic differential game problem to obtain a Nash equilibrium.In this study,we combined mean-field game theory with relevant methods from continuous-time reinforcement learning to construct an approximate Nash equilibrium in a large-scale bank lending network.First,by solving the forward-backward coupled HJB-FPK equation,we obtained the mean-field equilibrium strategy representing the banks.Next,based on the form of the obtained strategy,we designed an iterative parameter method to characterize the approximate optimal strategy when parameters are unknown.Finally,using the learned parameters,we constructed an approximate Nash equilibrium for a large number of banks.
分 类 号:O211.9[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49