检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lei WANG Chen MA Xueyang FENG Zeyu ZHANG Hao YANG Jingsen ZHANG Zhiyuan CHEN Jiakai TANG Xu CHEN Yankai LIN Wayne Xin ZHAO Zhewei WEI Jirong WEN
机构地区:[1]Gaoling School of Artificial Intelligence,Renmin University of China,Beijing 100872,China
出 处:《Frontiers of Computer Science》2024年第6期1-26,共26页计算机科学前沿(英文版)
基 金:the National Natural Science Foundation of China(Grant No.62102420);the Beijing Outstanding Young Scientist Program(No.BJJWZYJH012019100020098)。
摘 要:Autonomous agents have long been a research focus in academic and industry communities.Previous research often focuses on training agents with limited knowledge within isolated environments,which diverges significantly from human learning processes,and makes the agents hard to achieve human-like decisions.Recently,through the acquisition of vast amounts of Web knowledge,large language models(LLMs)have shown potential in human-level intelligence,leading to a surge in research on LLM-based autonomous agents.In this paper,we present a comprehensive survey of these studies,delivering a systematic review of LLM-based autonomous agents from a holistic perspective.We first discuss the construction of LLM-based autonomous agents,proposing a unified framework that encompasses much of previous work.Then,we present a overview of the diverse applications of LLM-based autonomous agents in social science,natural science,and engineering.Finally,we delve into the evaluation strategies commonly used for LLM-based autonomous agents.Based on the previous studies,we also present several challenges and future directions in this field.
关 键 词:autonomous agent large language model human-level intelligence
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15