Large language models for generative information extraction:a survey  被引量:3

在线阅读下载全文

作  者:Derong XU Wei CHEN Wenjun PENG Chao ZHANG Tong XU Xiangyu ZHAO Xian WU Yefeng ZHENG Yang WANG Enhong CHEN 

机构地区:[1]State Key Laboratory of Cognitive Intelligence&University of Science and Technology of China,Hefei 230000,China [2]Department of Data Science,City University of Hong Kong,Hongkong 999077,China [3]Jarvis Research Center,Tencent YouTu Lab,Beijing 100029,China [4]Anhui Conch Information Technology Engineering Co.,Ltd.,Wuhu 241000,China

出  处:《Frontiers of Computer Science》2024年第6期61-84,共24页计算机科学前沿(英文版)

基  金:supported in part by the grants from the National Natural Science Foundation of China(Nos.62222213,62072423);partially supported by Research Impact Fund(No.R1015-23),APRC-CityU New Research Initiatives(No.9610565,Start-up Grant for New Faculty of CityU);CityU-HKIDS Early Career Research Grant(No.9360163);Hong Kong ITC Innovation and Technology Fund Midstream Research Programme for Universities Project(No.ITS/034/22MS);Hong Kong Environmental and Conservation Fund(No.88/2022);SIRG-CityU Strategic Interdisciplinary Research Grant(No.7020046);Huawei(Huawei Innovation Research Program),Tencent(CCFTencent Open Fund,Tencent Rhino-Bird Focused Research Program),Ant Group(CCF-Ant Research Fund,Ant Group Research Fund);Alibaba(CCFAlimama Tech Kangaroo Fund(No.2024002));CCF-BaiChuan-Ebtech Foundation Model Fund;Kuaishou.

摘  要:Information Extraction(IE)aims to extract structural knowledge from plain natural language texts.Recently,generative Large Language Models(LLMs)have demonstrated remarkable capabilities in text understanding and generation.As a result,numerous works have been proposed to integrate LLMs for IE tasks based on a generative paradigm.To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks,in this study,we survey the most recent advancements in this field.We first present an extensive overview by categorizing these works in terms of various IE subtasks and techniques,and then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs.Based on a thorough review conducted,we identify several insights in technique and promising research directions that deserve further exploration in future studies.We maintain a public repository and consistently update related works and resources on GitHub(LLM4IE repository).

关 键 词:information extraction large language models REVIEW 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP391.1[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象