检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Derong XU Wei CHEN Wenjun PENG Chao ZHANG Tong XU Xiangyu ZHAO Xian WU Yefeng ZHENG Yang WANG Enhong CHEN
机构地区:[1]State Key Laboratory of Cognitive Intelligence&University of Science and Technology of China,Hefei 230000,China [2]Department of Data Science,City University of Hong Kong,Hongkong 999077,China [3]Jarvis Research Center,Tencent YouTu Lab,Beijing 100029,China [4]Anhui Conch Information Technology Engineering Co.,Ltd.,Wuhu 241000,China
出 处:《Frontiers of Computer Science》2024年第6期61-84,共24页计算机科学前沿(英文版)
基 金:supported in part by the grants from the National Natural Science Foundation of China(Nos.62222213,62072423);partially supported by Research Impact Fund(No.R1015-23),APRC-CityU New Research Initiatives(No.9610565,Start-up Grant for New Faculty of CityU);CityU-HKIDS Early Career Research Grant(No.9360163);Hong Kong ITC Innovation and Technology Fund Midstream Research Programme for Universities Project(No.ITS/034/22MS);Hong Kong Environmental and Conservation Fund(No.88/2022);SIRG-CityU Strategic Interdisciplinary Research Grant(No.7020046);Huawei(Huawei Innovation Research Program),Tencent(CCFTencent Open Fund,Tencent Rhino-Bird Focused Research Program),Ant Group(CCF-Ant Research Fund,Ant Group Research Fund);Alibaba(CCFAlimama Tech Kangaroo Fund(No.2024002));CCF-BaiChuan-Ebtech Foundation Model Fund;Kuaishou.
摘 要:Information Extraction(IE)aims to extract structural knowledge from plain natural language texts.Recently,generative Large Language Models(LLMs)have demonstrated remarkable capabilities in text understanding and generation.As a result,numerous works have been proposed to integrate LLMs for IE tasks based on a generative paradigm.To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks,in this study,we survey the most recent advancements in this field.We first present an extensive overview by categorizing these works in terms of various IE subtasks and techniques,and then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs.Based on a thorough review conducted,we identify several insights in technique and promising research directions that deserve further exploration in future studies.We maintain a public repository and consistently update related works and resources on GitHub(LLM4IE repository).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15