ISM:intra-class similarity mixing for time series augmentation  

在线阅读下载全文

作  者:Pin LIU Rui WANG Yongqiang HE Yuzhu WANG 

机构地区:[1]School of Information Engineering,China University of Geosciences,Beijing 100083,China [2]State Key Lab of Software Development Environment,Beihang University,Beijing 100191,China

出  处:《Frontiers of Computer Science》2024年第6期273-275,共3页计算机科学前沿(英文版)

基  金:the Fundamental Research Funds for the Central Universities(No.2-9-2022-062)。

摘  要:1 Introduction.The superior performance of deep models in classification tasks relies heavily on large-scale supervision data with rich features[1].Recent research has shown that improving the feature diversity while expanding the data scale can improve the classification performance[2,3].Time series augmentation possessing the dual strategy is essential in successfully applying deep models in time series classification.

关 键 词:CLASSIFICATION SERIES MIXING 

分 类 号:O211.61[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象