WPIA:accelerating DNN warm-up in Web browsers by precompiling WebGL programs  

在线阅读下载全文

作  者:Deyu TIAN Yun MA Yudong HAN Qi YANG Haochen YANG Gang HUANG 

机构地区:[1]Key Laboratory of High Confidence Software Technologies(Peking University),Ministry of Education,School of Computer Science,Peking University,Beijing 100871,China [2]Institute for Artificial Intelligence,Peking University,Beijing 100871,China [3]National Key Laboratory of Data Space Technology and System,Beijing 100195,China

出  处:《Frontiers of Computer Science》2024年第6期281-283,共3页计算机科学前沿(英文版)

基  金:the National Natural Science Foundation of China(Grant No.62102009);the Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201910001004)。

摘  要:1 Introduction.With the advent of artificial intelligence,it is becoming increasingly common to leverage deep learning technologies to provide intelligent services in Web apps[1].Compared with traditional approaches where deep neural network(DNN)runs at cloud servers,DNN inference in Web browsers avoids serverconnections,boostingtheresponsivenesssand enhancing user privacy of Web apps[2].Typically,GPU acceleration is required during DNN inference,especially on enddevices.

关 键 词:WEB BROWSER WEBGL 

分 类 号:TP393.09[自动化与计算机技术—计算机应用技术] TP18[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象