ABLkit:a Python toolkit for abductive learning  

在线阅读下载全文

作  者:Yu-Xuan HUANG Wen-Chao HU En-Hao GAO Yuan JIANG 

机构地区:[1]National Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210023,China [2]School of Artificial Intelligence,Nanjing University,Nanjing 210023,China

出  处:《Frontiers of Computer Science》2024年第6期289-290,共2页计算机科学前沿(英文版)

基  金:JiangsuSF(BK20232003)。

摘  要:1 Introduction.The integration of machine learning and logical reasoning has long been considered a holy grail problem in artificial intelligence.Recent years have seen considerable attention and significant progress in this field.ABductive Learning(ABL)[1,2]is a groundbreaking paradigm that integrates machine learning and logical reasoning in a unified framework.In ABL,the learning model learns to convert data into primitive logic facts,which serve as inputs for logical reasoning.

关 键 词:HAS LEARNING REASONING 

分 类 号:TP312.1[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象