DoS攻击下供应链系统的数据驱动无模型自适应控制  

Data-driven Model-free Adaptive Control for Supply Chain Systems under DoS Attacks

在线阅读下载全文

作  者:张志鹏 熊双双 侯忠生 ZHANG Zhi-peng;XIONG Shuang-shuang;HOU Zhong-sheng(Automation College,Beijing Information Science&Technology University,Beijing 100192,China;Automation College,Qingdao University,Qingdao 266071,China)

机构地区:[1]北京信息科技大学自动化学院,北京100192 [2]青岛大学自动化学院,青岛266071

出  处:《科学技术与工程》2024年第36期15526-15539,共14页Science Technology and Engineering

基  金:国家自然科学基金(62103057,61833001,62373206);国家重点研发计划(2020YFB1708200)。

摘  要:针对未知非线性供应链系统(supply chain systems,SCS),研究其受到拒绝服务(denial-of-service,DoS)攻击时商品输出量跟踪期望市场需求及抑制牛鞭效应的问题。首先使用动态线性化方法将供应链系统转化为动态数据模型。然后考虑DoS攻击服从伯努利分布且随机发生在传感器与控制中心的传输信道中,使用上一时刻历史数据的估计值代替因DoS攻击造成丢失的商品输出量。进而基于每条子链在DoS攻击下的原材料订单量与商品输出量设计无模型自适应防御控制算法,并通过理论分析证明该控制算法下闭环系统的收敛性。最后,通过仿真验证了控制算法的有效性。The problem of tracking the expected market demand and suppressing the bullwhip effect was investigated for an unknown nonlinear supply chain systems(SCS)subject to a denial-of-service(DoS)attack on the commodity output.The supply chain system was first transformed into a dynamic data model using a dynamic linearisation approach.Then,considering that the DoS attack followed a Bernoulli distribution and occured randomly in the transmission channel between the sensor and the control centre,the lost commodity output due to the DoS attack was replaced by the estimated value of the historical data at the previous moment.The model-free adaptive defensive control algorithm was then designed based on the raw material orders and commodity output of each sub-chain under the DoS attack,and the convergence of the closed-loop system under the defensive control algorithm was demonstrated by theoretical analysis.Finally,the effectiveness of the defensive control algorithm was verified by simulation.

关 键 词:供应链系统(SCS) 拒绝服务(DoS)攻击 牛鞭效应 无模型自适应控制 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象