Text-Image Feature Fine-Grained Learning for Joint Multimodal Aspect-Based Sentiment Analysis  

作  者:Tianzhi Zhang Gang Zhou Shuang Zhang Shunhang Li Yepeng Sun Qiankun Pi Shuo Liu 

机构地区:[1]School of Data and Target Engineering,Information Engineering University,Zhengzhou,450001,China [2]Information Engineering Department,Liaoning Provincial College of Communications,Shenyang,110122,China [3]School of Computer and Artificial Intelligence,Zhengzhou University,Zhengzhou,450000,China

出  处:《Computers, Materials & Continua》2025年第1期279-305,共27页计算机、材料和连续体(英文)

基  金:supported by the Science and Technology Project of Henan Province(No.222102210081).

摘  要:Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods.

关 键 词:Multimodal sentiment analysis aspect-based sentiment analysis feature fine-grained learning graph convolutional network adjective-noun pairs 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象