检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Meijie Sun Ziqi Lv Zhiqiang Xu Haimei Lv Yanan Tu Weidong Wang
机构地区:[1]School of Chemical&Environmental Engineering,China University of Mining&Technology(Beijing),Beijing 100083,China [2]Inner Mongolia Research Institute,China University of Mining&Technology(Beijing),Ordos 017001,China [3]State Key Laboratory of Media Convergence Production Technology and Systems,Beijing 100803,China
出 处:《International Journal of Mining Science and Technology》2024年第11期1587-1597,共11页矿业科学技术学报(英文版)
基 金:supported by the Youth Fund of the National Natural Science Foundation of China(No.52304311);the National Natural Science Foundation of China(No.52274282);the Postdoctoral Fellowship Program of CPSF(No.GZC20233016)。
摘 要:The fluidity of coal-water slurry(CWS)is crucial for various industrial applications such as long-distance transportation,gasification,and combustion.However,there is currently a lack of rapid and accurate detection methods for assessing CWS fluidity.This paper proposed a method for analyzing the fluidity using videos of CWS dripping processes.By integrating the temporal and spatial features of each frame in the video,a multi-cascade classifier for CWS fluidity is established.The classifier distinguishes between four levels(A,B,C,and D)based on the quality of fluidity.The preliminary classification of A and D is achieved through feature engineering and the XGBoost algorithm.Subsequently,convolutional neural networks(CNN)and long short-term memory(LSTM)are utilized to further differentiate between the B and C categories which are prone to confusion.Finally,through detailed comparative experiments,the paper demonstrates the step-by-step design process of the proposed method and the superiority of the final solution.The proposed method achieves an accuracy rate of over 90%in determining the fluidity of CWS,serving as a technical reference for future industrial applications.
关 键 词:Coal water slurry Spatio-temporal feature CNN-LSTM Video classification Machine vision
分 类 号:TQ536[化学工程—煤化学工程] TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38