高速列车客室飞沫传播规律及通风控制策略  

Respiratory droplet transmission patterns and ventilation control strategies in the high-speed train cabin

在线阅读下载全文

作  者:伍钒 胡长林 徐任泽 崔清民 李恒奎 WU Fan;HU Changlin;XU Renze;CUI Qingmin;LI Hengkui(Key Laboratory of Traffic Safety on Track,Ministry of Education,School of Traffic&Transportation Engineering,Central South University,Changsha 410075,China;Joint International Research Laboratory of Key Technologies for Rail Traffic Safety,Central South University,Changsha 410075,China;National&Local Joint Engineering Research Center of Safety Technology for Rail Vehicle,Central South University,Changsha 410075,China;School of Software,Henan Institute of Engineering,Zhengzhou 451191,China)

机构地区:[1]中南大学交通运输工程学院轨道交通安全教育部重点实验室,湖南长沙410075 [2]中南大学轨道交通安全关键技术国际合作联合实验室,湖南长沙410075 [3]中南大学轨道交通列车安全保障技术国家地方联合工程研究中心,湖南长沙410075 [4]河南工程学院软件学院,河南郑州451191

出  处:《铁道科学与工程学报》2024年第12期4872-4884,共13页Journal of Railway Science and Engineering

基  金:国家自然科学基金面上项目(52072413);中国国家铁路集团有限公司铁路基础研究联合基金资助项目(U2368213);中南大学研究生科研创新项目(506021743)。

摘  要:高速列车密闭性高、运行时间长且乘员密度大,携带流行性病原体的呼吸道飞沫容易随客室内气流扩散,威胁乘员健康。结合离散相模型构建了高速列车客室内流场与飞沫耦合运动的数值仿真方法,并通过实车试验进行了验证。此外,针对飞沫扩散范围难以有效控制的问题,在当前列车风道系统的基础上,提出了一套可行的送风方案。研究结果表明:小粒径飞沫由于其斯托克斯数较小,在空气中的运动轨迹和扩散模式主要受空气粘性阻力控制,表现出对室内周围流体良好的跟随性。释放源与端部回风口的相对距离是室内飞沫运动模式的关键因素,随着两者距离的增大,飞沫在纵向上的传播距离呈现出先增大后减小的变化趋势。客室右侧中间区域释放源产生的小粒径飞沫展现了最广泛的扩散范围,而在客室前端和后端区域释放的小粒径飞沫的纵向平均传输距离则分别下降了44.9%和74.3%。此外,当客室顶部出风口与侧壁出风口送风量的比例为1∶3时,有助于限制飞沫群在乘员区域的流动,释放源2 m外乘员区域内的飞沫聚集量可减少57.4%,且乘员表面的小粒径飞沫沉积总量下降34.0%,显著降低了客室内乘员整体感染的风险。研究结果可为客室内的环境安全和应急措施形成提供理论依据,且进一步保障了乘员出行安全和高速铁路有序运营。High-speed trains,characterized by their high degree of enclosure,long operation times,and high passenger density,present a challenge as respiratory droplets carrying epidemic pathogens can easily spread through the cabin air,posing a threat to passenger health.This study developed a numerical simulation method for the coupled movement of airflow and droplets within high-speed train compartments by using a discrete phase model(DPM),and verified it with field test experiments.Moreover,for addressing the challenge of effectively controlling the spread of respiratory droplets,this study also proposed a feasible ventilation scheme based on the existing air duct system of the train.The results indicate that due to their low Stokes numbers,the trajectory and diffusion mode of droplets of small-size diameter in the air are mainly controlled by the viscous resistance of the air,and that they show desired followability with the surrounding fluid in high-speed train compartments.The relative distance between the droplet source and the air return vent is a key factor in the indoor droplet movement pattern,with the longitudinal spread of droplets first increasing and then decreasing as this distance grows.Droplets from a release source in the middle area on the right side of the compartment show the widest dispersion range,while the average longitudinal transmission distance of droplets released in the front and rear areas of the compartment decreases by 44.9%and 74.3%,respectively.Furthermore,when the airflow volume from the top and side wall vents is set at a ratio of 1∶3,it contributes to restricting the movement of droplet clusters within the passenger area.The number concentration of droplets within 2.0 m distance of the source in the passenger area is reduced by 57.4%,and the total deposition of small-size diameter droplets on passenger surfaces decreases by 34.0%.This significantly reduces the overall risk of passenger infection within compartments.These findings contribute to providing a theoretical basis for the f

关 键 词:高速列车客室 飞沫传播 数值仿真 流动控制 室内流场 

分 类 号:U266.2[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象