稀土典型开采区植被影响的遥感定量评估  

Quantitative Evaluation of Vegetation Impact in Typical Rare Earth Mining Areas Using Remote Sensing

在线阅读下载全文

作  者:陈捷 王耿明 王佳红 CHEN Jie;WANG Geng-ming;WANG Jia-hong(Guangdong Geological Survey Institute,Guangzhou Guangdong 510030,China)

机构地区:[1]广东省地质调查院,广东广州510030

出  处:《地矿测绘》2024年第4期33-38,共6页Surveying and Mapping of Geology and Mineral Resources

摘  要:研究旨在从归一化植被指数(NDVI)、生态遥感指数(RSEI)和植被碳储量三个方面系统地调查小规模开采的植被影响。NDVI结果表明,小规模采区的植被经历了震荡下行和缓慢上升两个阶段,主要是由于政府的监管作用,采区生态环境逐渐恢复;RSEI显示采区的核心区域,植被自然生长状态不佳,边缘区域得到了较好修复;植被碳储量显示,采区损失了1866.1 t,相较于周围未开采区域,损失比例高达95.9%,基本上等同于完全损失;生态恢复区损失了368.6 t,损失比例为79.2%;两者均受到了严重的植被破坏。研究揭示了小规模稀土矿床开采造成的植被影响,可为未来稀土矿床绿色可持续发展提供科学依据。This study aims to systematically investigate the vegetation impacts of small-scale mining from three aspects:Normalized Difference Vegetation Index(NDVI),Ecological Remote Sensing Index(RSEI),and vegetation carbon storage.The NDVI results indicate that the vegetation in small-scale mining areas has gone through two stages of fluctuating downward and slow upward,mainly due to the government's regulatory role,and the ecological environment in the mining areas has gradually recovered;RSEI shows that the core area of the mining area has poor natural vegetation growth,and the edge areas have been well restored;According to vegetation carbon storage,the mining area lost 1866.1 t,with a loss ratio of 95.9%compared to the surrounding unexplored areas,which is basically equivalent to complete loss;The ecological restoration area lost 368.6 t,accounting for 79.2%of the loss;Both have suffered severe vegetation damage.This study reveals the vegetation impact caused by small-scale rare earth deposit mining,providing scientific basis for the green and sustainable development of rare earth deposits in the future.

关 键 词:稀土 小规模开采 NDVI RSEI 有机碳 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置] F062.2[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象