检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:穆司琪 文硕 陆杨 艾渤[3] MU Siqi;WEN Shuo;LU Yang;AI Bo(School of Sports Engineering,Beijing Sport University,Beijing 100084,China;School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China;School of Electronics and Information Engineering,Beijing Jiaotong University,Beijing 100044,China)
机构地区:[1]北京体育大学体育工程学院,北京100084 [2]北京交通大学计算机与信息技术学院,北京100044 [3]北京交通大学电子信息工程学院,北京100044
出 处:《物联网学报》2024年第4期45-53,共9页Chinese Journal on Internet of Things
基 金:国家自然科学基金资助项目(No.62101025)。
摘 要:体域网(BAN,bodyareanetwork)是医疗物联网在个人健康监测领域的关键技术,融合边缘计算实现生理数据实时监测、紧急预警和治疗诊断智能化等服务。然而,体域网中感知节点计算任务的服务质量(QoS,qualityof service)随感知数据的紧急程度动态变化,现有的边缘算力网络资源分配方法难以高效灵活地保障体域网中多源异质任务的动态QoS。对长时程动态QoS感知的计算卸载和边缘算力随机优化问题进行了研究。考虑各体域网多源任务优先级和信道状态变化的马尔可夫性质,首先将原始的随机优化问题转化为无穷视域的马尔可夫决策过程问题。然后,构建各体域网的多源任务优先级序列,提出融合近端策略优化(PPO,proximal policy optimization)的深度强化学习任务卸载及算力分配在线决策算法。仿真结果表明,所提的决策算法优于现有基准算法,可有效地满足体域网中任务动态优先级需求,并降低任务完成所需的能量消耗和平均时延。Body area network(BAN)is a key technology of the medical Internet of things for personal health monitoring.Integrated with edge computing,it realizes real-time monitoring of physiological data,emergency warning,and intelligent treatment and diagnosis.However,the quality of service(QoS)requirements of the computing tasks in BAN varie with the urgency of the sensing data.The existing resource allocation methods in edge computing network are difficult to efficiently and flexibly support dynamic QoS of multi-source heterogeneous tasks in BAN.A dynamic QoS-aware stochastic optimization problem on computation offloading decisions and edge computing resource allocation was studied.Firstly,considering the Markov nature of multi-source task priorities and channel state changes in BAN,the original stochastic optimization problem was transformed into an infinite horizon Markov decision process problem.Then,a multi-source task priority sequence for each BAN was constructed and an online decision-making method that integrated proximal policy optimization(PPO)was proposed for task offloading and computing resource allocation.The simulation results show that the proposed optimization scheme outperforms existing baseline methods,effectively meeting the dynamic priority requirements of tasks in BAN and reducing the energy consumption as well as the average delay required for task completion.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43