运用线性回归模型预测不同月龄肉用褐牛体重  

A Iinear Regression Model was Used to Predict the Weight of Brown Cattle for Meat at Different Ages

在线阅读下载全文

作  者:陈素梅 刘梦 张雨夏 王骁 陈文中 苏楠 王思翰 王文景 崔繁荣 叶治兵 马桢[2] 闫向民[2] CHEN Su-mei;LIU Meng;ZHANG Yu-xia;WANG Xiao;CHEN Wen-zhong;SU Nan;WANG Si-han;WANG Wen-jing;CUI Fan-rong;YEe Zhi-bing;MA Zhen;YAN Xiang-min(College of Animal Science,Xinjiang Agricultural University,Urumqi,Xinjiang 830052 China;Xinjiang Academy of Animal Husbandry,Urumqi,Xinjiang 830011 China;College of Animal Science and Technology,Shihezi University,Shihezi,Xinjiang 832061 China)

机构地区:[1]新疆农业大学动物科学学院,新疆乌鲁木齐830052 [2]新疆畜牧科学院,新疆乌鲁木齐830011 [3]石河子大学动物科技学院,新疆石河子832061

出  处:《中国牛业科学》2024年第6期14-27,共14页China Cattle Science

基  金:自治区科技重大专项(2022A02001-1);新疆维吾尔自治区肉牛产业体系(XJARS-10-04);新疆褐牛联合育种群体改良提升行动计划课题(2024XJHN-6)。

摘  要:【目的】体尺体重是衡量牛生长发育的重要指标,对饲养管理与选种选育具有重要意义。为了构建新疆褐牛公母牛体尺与体重回归预测模型。【方法】在本研究中选取了不同月龄阶段健康状况良好、品种特征明显的新疆褐牛公母牛共2 045头,对不同年龄和性别下的新疆褐牛进行体尺及体重指标测定,并将数据进行了分析,通过对比13个体尺指标和仅用相关系数最高的4个体尺指标与体重的关系,构建了相应的体尺与体重回归模型。【结果】通过对比建立的模型,我们研究发现胸围和腹围是影响体重的主要因素。特别是对于0~6月龄的,使用13个体尺指标建立的线性回归模型具有最高的拟合度分别为0~6月龄的公牛和母牛,为0.918和0.942,0~6月龄公牛线性回归方程:Y=-165.185+0.028X_1-0.088X_(12)-0.035X_3+0.239X_(4)+1.668X_5+0.109X_6+1.053X_7-0.439X_(8)+1.068X_(9)+1.796X_(10)+1.573X_(11)-0.802X_(12)-0.258X_(13)(R^(2)=0.918),0~6月龄母牛线性回归方程:Y=-182.399+0.97X_1-0.359X_(2)+0.579X_3-0.097X_(4)-0.683X_5+0.025X_6-0.364X_7+0.502X_(8)+0.329X_(9)+1.374X_(10)+1.786X_(11)-0.083X_(12)+0.097X_(13)(R^(2)=0.942);使用4个体尺指标建立的线性回归模型具有最高的拟合度分别为0.882和0.933,0-6月龄公牛线性回归方程:Y=-162.511+0.555X_(2)+1.218X_(9)+0.986X_(11)-0.127X_(12)(R^(2)=0.882),0~6月龄母牛线性回归方程:Y=-175.941+0.436X_(2)+0.449X_(9)+2.073X_(11)-0.213X_(12)(R^(2)=0.933)。不同性别的牛群在各年龄段生长发育速度不同,除13-18月龄的公牛外,在此年龄段发育迅速,变化大,动态明显。导致体尺与体重的回归模型拟合效果不是很好,但是在其他不同年龄段和不同性别的模型展现了良好的拟合效果。【结论】新疆褐牛的体尺与体重之间存在显著相关性,建立了体尺预测体重的线性回归公式,且0~6月龄、7~12月龄以及30月龄以上的牛群的模型通过成对样本t检验得出预测体重与实测体重�【Objective】Body size and weight are an important index to measure the growth and development of cattle,and are of great significance for feeding management and seed selection.In order to construct the regression prediction model of body size and weight of Xinjiang brown cattle and cows.【Method】In this study,a total of 2045 Xinjiang brown cattle with good health and obvious breed characteristics at different age stages were selected.The body measurements and weight indicators of Xinjiang brown cattle of different ages and genders were measured,and the data were analyzed.By comparing the relationship between 13 body measurements and only 4 body size indicators with the highest correlation coefficient and weight,a corresponding regression model between body size and weight was constructed.【Results】By comparing the established models,we found that chest circumfer-ence and abdominal circumference were the main factors affecting body weight.Especially for bulls and cows aged 0~6 months,the linear regression models established by using 13 body size indicators had the highest fitting degrees of 0.918 and 0.942,respectively.The linear regression equation of bulls aged 0~6 months is:Y=-165.185+0.028X1-0.088X_(2)-0.035X3+0.239X_(4)+1.668X5+0.109X6+1.053X7-0.439X_(8)+1.068X_(9)+1.796X10+1.573X11-0.802X_(12)-0.258X13(R^(2)=0.918),The linear regression equation of 0~6 month-old cows:Y=-182.399+0.97X1-0.359X_(2)+0.579X3-0.097X_(4)-0.683X5+0.025X6-0.364X7+0.502X_(8)+0.329X_(9)+1.374X10+1.786X11-0.083X_(12)+0.097X13(R^(2)=0.942);The linear regression models based on four body size indicators had the highest fitting degrees of 0.882 and 0.933,respectively.The linear regression equation of 0~6 month-old bulls was Y=-162.511+0.555X_(2)+1.218X_(9)+0.986X11-0.127X_(12)(R^(2)=0.882),and the linear regression equation of 0~6 month-old cows was Y=-175.941+0.436X_(2)+0.449X_(9)+2.073X11-0.213X_(12)(R^(2)=0.933).Cattle of different sexes had different growth and development rates at different ages,except for bulls aged 13~18 mo

关 键 词:新疆褐牛 回归模型 相关性 估测体重 

分 类 号:S823[农业科学—畜牧学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象