检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张哲 ZHANG Zhe(School of Management Science and Engineering,Shandong University of Finance and Economics,Jinan 250014,China)
机构地区:[1]山东财经大学管理科学与工程学院,山东济南250014
出 处:《济宁学院学报》2024年第6期53-59,共7页Journal of Jining University
基 金:2023年山东省社科规划研究专项“数字化时代山东省文旅业态转型与治理创新研究”(23CLYJ21)。
摘 要:趵突泉是我国宝贵的自然和历史文化遗产,文旅融合是保护和利用趵突泉自然和人文景观资源的重要路径。趵突泉景区作为展示泉水景观和泉文化的重要旅游景区,其游客反馈对于提升趵突泉景区景观建设和管理服务水平具有重要意义。从大众点评网、携程网获取2023年1月至2024年7月期间趵突泉景区游客在线评论2.3万余条,使用LDA模型对评论数据进行主题分析,挖掘出影响游客服务评价和满意度的关键要素,提出加强景观保护、完善产品体系,改善交通状况、建设停车设施,提升服务质量、优化消费体验,优化网络预订、加强客流管理等建议。研究结果不仅为趵突泉及其他文旅景区的管理提供相关改进建议,也为运用文本挖掘技术分析在线游客评论提供新的研究视角和方法论参考。Baotu Spring is a valuable natural and historical cultural heritage in China,and the integration of culture and tourism represents a crucial approach to conserve and utilize its natural and human landscape resources.As a significant tourist attraction showcasing spring landscapes and spring culture,feedback from visitors to Baotu Spring Scenic Spot holds great significance for enhancing the area's landscape construction,services,and management levels.This study obtained over 23,000 online reviews from visitors to Baotu Spring Scenic Spot on Dianping and Ctrip platforms between January 2023 and July 2024.By applying the Latent Dirichlet Allocation(LDA)model to the analysis of the themes of these reviews,key factors influencing visitors'service evaluations and satisfaction were identified.Recommendations include strengthening landscape conservation and refining the product system,improving transportation and constructing parking facilities,enhancing service quality and optimizing consumer experiences,as well as optimizing online reservations and reinforcing tourist flow management.The findings not only provide relevant improvement suggestions for the management of Baotu Spring and other cultural tourism scenic spots but also offer new research perspectives and methodological references for analyzing online visitor reviews using text mining techniques.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3