基于Z轴相关性Zero-Shot Noise2Noise降低低剂量CT图像噪声  

Reducing noise of low dose CT images with Zero-Shot Noise2Noise based on Z-axis correlation

在线阅读下载全文

作  者:李金霞 李静静 肖丹 赵宏波 朱守平 LI Jinxia;LI Jingjing;XIAO Dan;ZHAO Hongbo;ZHU Shouping(Institute of Medical Technology,Xi'an Medical University,Xi'an 710021,China;Department of Imaging,the First Affiliated Hospital of Xi'an Medical University,Xi'an 710077,China;School of Life Science and Technology,Xidian University,Xi'an 710126,China)

机构地区:[1]西安医学院医学技术学院,陕西西安710021 [2]西安医学院第一附属医院影像科,陕西西安710077 [3]西安电子科技大学生命科学技术学院,陕西西安710126

出  处:《中国医学影像技术》2024年第11期1764-1768,共5页Chinese Journal of Medical Imaging Technology

基  金:陕西省“十四五”教育科学规划2023年度课题(SGH23Y2459);西安医学院第五批校级重点学科(12202306)。

摘  要:目的 观察基于Z轴相关性Zero-Shot Noise2Noise(ZS-N2N)方法降低低剂量CT(LDCT)图像噪声的价值。方法 选取癌症成像档案CT数据集,包括正常剂量CT(NDCT)图像和LDCT图像,胸、腹部图像各3组。采用ZS-N2N方法基于Z轴相关性降低LDCT图像噪声,与Self2Self、单纯ZS-N2N及传统Block-matching and 3D filtering(BM3D)方法进行对比,观察各算法峰值信噪比(PSNR)、结构相似度(SSIM)及降噪耗时。结果 降噪后,Self2Self降噪图像噪声明显;BM3D降噪图像结构边缘较模糊,存在部分细节丢失;单纯ZS-N2N和基于Z轴相关性的ZS-N2N降噪图像留有更多细节,质量较好。以Self2Self降低LDCT图像噪声的PSNR和SSIM较差、耗时较长,其余3种方法的PSNR、SSIM和耗时均相近;其中,基于Z轴相关性ZS-N2N的PSNR略高于BM3D和单纯ZS-N2N,但耗时仍略长。结论 基于Z轴相关性ZS-N2N对降低LDCT图像噪声具有较高价值。Objective To observe the value of Zero-Shot Noise2Noise(ZS-N2N)based on Z-axis correlation for reducing noise of low dose CT(LDCT)images.Methods CT data of the cancer imaging archive were enrolled,including normal dose CT(NDCT)images and LDCT images,with 3 sets of chest and 3 sets of abdominal images.Noise on LDCT images were reduced with ZS-N2N method based on Z-axis correlation,and the peak signal-to-noise ratio(PSNR),structural similarity(SSIM)and time-consuming of reducing noise were compared with those of Self2Self,simple ZS-N2N and traditional Block-matching and 3D filtering(BM3D).Results After reducing noise,noise on Self2Self denoised images remained significant,the structure edges on BM3D denoised images were blurry with some details lost,while simple ZS-N2N and ZS-N2N based on Z-axis correlation denoised images preserved more details and had better quality.PSNR and SSIM of Self2Self denoised images were poor and the time-consuming were longer.PSNR,SSIM and time-consuming of the other 3 methods were similar,among which PSNR of ZS-N2N based on Z-axis correlation were slightly higher than BM3D and simple ZS-N2N,but the time-consuming were also slightly longer.Conclusion ZS-N2N based on Z-axis correlation had high value for reducing noise of LDCT images.

关 键 词:噪声 低剂量 体层摄影术 X线计算机 机器学习 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] R814.42[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象