检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯宇扬 李登华[2,3] 方博雅 丁勇 FENG Yuyang;LI Denghua;FANG Boya;DING Yong(School of Science,Nanjing University of Science and Technology,Nanjing 210094,China;Nanjing Hydraulic Research Institute,Nanjing 210029,China;Key Laboratory of Reservoir Dam Safety,Ministry of Water Resources,Nanjing 210029,China;Huashe Testing Technology Co.,Ltd.,Nanjing 211100,China)
机构地区:[1]南京理工大学理学院,江苏南京210094 [2]南京水利科学研究院,江苏南京210029 [3]水利部水库大坝安全重点实验室,江苏南京210029 [4]华设检测科技有限公司,江苏南京211100
出 处:《现代电子技术》2025年第2期90-96,共7页Modern Electronics Technique
基 金:国家重点研发计划资助项目(2022YFC3005502);国家自然科学基金长江水科学研究联合基金项目(U2240221);国家自然科学基金资助项目(51979174)90。
摘 要:大坝监测数据是判断大坝运行安全的主要依据,为了鉴别数据优劣并选择出可信度较高的数据,文中构建一个大坝监测数据质量评价框架。针对测点之间的相关性、监测项目及仪器的特点,利用Kshape算法找出具有强相关性的测点,再通过相对偏移率、相对平滑率、周期波动程度和精度修正率等评价因子对大坝监测数据进行评价;其次,结合混合蝙蝠算法优化后的长短期记忆网络对大坝监测数据进行分类,构建了大坝监测数据质量评价算法流程。以新疆某大坝监测数据为研究对象进行试验,结果表明所提出的大坝监测数据质量评价算法的准确率为94.33%,可为评价大坝监测数据质量提供有效的解决方法。Dam monitoring data is the main basis for judging the safety of dam operation.In order to identify the data quality and select the data with high reliability,a dam monitoring data quality evaluation framework is constructed.According to the correlation between measuring points and the features of monitoring items and instruments,Kshape algorithm is used to find out the measuring points with strong correlation,and then the dam monitoring data is evaluated by means of the evaluation factors such as relative offset rate,relative smoothness rate,periodic fluctuation degree and accuracy correction rate.In combination with the LSTM(long short-term memory network)optimized by hybrid bat algorithm,the dam monitoring data is classified,and the algorithm flow of dam monitoring data quality evaluation is constructed.The test is conducted by taking a dam monitoring data in Xinjiang as the research object.The results show that the accuracy of the proposed dam monitoring data quality evaluation algorithm is 94.33%,which can provide an effective solution for evaluating the quality of dam monitoring data.
关 键 词:大坝监测数据 评价因子 数据质量评价 长短期记忆网络 测点聚类 相关性分析
分 类 号:TN919.2-34[电子电信—通信与信息系统] TV698.2[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15