检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yongkang Zhou Shuai Zeng Hongwei Zhang Haifeng Zhang Hongquan Gao Hongwei Zhao Zhengwang Zhu
机构地区:[1]Shi-changxu Innovation Center for Advanced Materials,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China [2]School of Materials Science and Engineering,University of Science and Technology of China,Shenyang 110016,China [3]CAS Key Laboratory of Nuclear Materials and Safety Assessment,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China [4]School of Metallurgy,Northeastern University,Shenyang 110819,China [5]Unit 96901 PLA,Beijing 100094,China
出 处:《Journal of Materials Science & Technology》2024年第20期101-112,共12页材料科学技术(英文版)
基 金:This work was financially supported by the National Natu-ral Science Foundation of China(No.52074257);the Chinese Academy of Sciences(No.ZDBS-LY-JSC023).
摘 要:Compared with cold rolling,warm rolling can significantly reduce or completely eliminate microstruc-ture damage to regulate the microstructure of the material,which is an effective method to improve the mechanical properties of the material.However,the effect of warm rolling on refractory complex concen-trated alloys(RCCAs)has rarely been reported.This research examines how warm rolling influences the microstructure,texture,and mechanical properties of the Zr_(45)Ti_(15)Nb_(30)Ta_(10)RCCA.The RCCA was warm-rolled to a 75%reduction in thickness at 650℃(two-phase zone)and then annealed at 1000°C for 1 h.To highlight the advantages of warm rolling,a comparison was conducted with similarly deformed and annealed cold-rolled RCCA.The warm-rolled RCCA exhibits a layered heterogeneous structure and induces the precipitation of the(Nb,Ta)-enriched bcc2 phase.The deformation texture of warm-rolled RCCA is weaker than that of cold-rolled RCCA,which is attributed to localized deformation inhomogene-ity.After annealing,warm rolling resulted in a remarkable increase in the yield strength of the RCCA,i.e.,from 861 MPa to 1071 MPa;meanwhile,moreover,the tensile plasticity was almost identical.Warm rolling leads to a change in plastic deformation of the RCCA from dislocation cross-slip to one dominated by the interaction of dislocations with subgrain boundaries as well as the bcc2 phase.The back tress gen-erated by the heterogeneous structure induced by warm rolling is also effective in increasing the yield strength of the RCCA.The remarkably layered heterogeneous structure,subgrain boundaries and textures result in warm-rolled RCCA with optimal strength-ductility combination.Our results provide an effective processing approach for tailoring the microstructure and mechanical properties of RCCAs.
关 键 词:Refractory complex concentrated alloy Warm rolling Heterogeneous structure Mechanical properties
分 类 号:TG14[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145