球壳结构馈通增长的瑞利-泰勒不稳定性  

Rayleigh-Taylor Instability of Feedthrough Growth in a Spherical Shell Geometry

在线阅读下载全文

作  者:林其文[1] 

机构地区:[1]中国工程物理研究院流体物理研究所冲击波物理与爆轰物理实验室,四川绵阳621900

出  处:《爆炸与冲击》2002年第4期289-294,共6页Explosion and Shock Waves

摘  要:利用小扰动分析法 ,导出不可压缩球壳结构的馈通增长方程 ,数值模拟了高压气体驱动外表面有初始扰动的明胶球壳的瑞利 泰勒不稳定性模型。计算结果表明 :对于低波数扰动 ,外界面比较稳定 ,内表面的馈通增长较快 ,具有比较明显的三个演化阶段和波形反转现象。高波数扰动的增长恰好与低波数相反。Feedthrough perturbation growth equations in an incompressible spherical shell geometry were derived by small-amplitude perturbation analysis, and RT instability models on transparent gelatin spherical shell with initial perturbation on the outer surface were numerically calculated. This shell was imploded with high-pressure gases. The calculations show that in the low wave number band, the outer surface is stable, while the feedthrough growth on the inner surface is rapid, resulting in the observed phase inversion. The perturbation growth behavior in the high wave number band is opposite to that in the low wave number band. The interface stability of the spherical shell geometry is better than that of the cylinder.

关 键 词:球壳结构 馈通增长 会聚结构 瑞利-泰勒不稳定性 小扰动分析 

分 类 号:O357.41[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象