An Explicit Function Expression for dc Bias and Temperature Dependence of Magnetoresistances in Magnetic Tunnel Junctions  

An Explicit Function Expression for dc Bias and Temperature Dependence of Magnetoresistances in Magnetic Tunnel Junctions

在线阅读下载全文

作  者:Xiufeng HANState Key Laboratory of Magnetism, Institute of Physics and Center of Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China 

出  处:《Journal of Materials Science & Technology》2002年第6期497-501,共5页材料科学技术(英文版)

基  金:This work was supported by 2000 Hundred Talents Program project of Chinese Academy of Sciences and 973 project with Grant No. 2001CB610601 of PRC Ministry of Science and Technology. X.F.Han also gratefully acknowledges the partial support of K.C.Wong Edu

摘  要:An explicit function expression for the bias voltage or/and temperature dependences of tunnel magnetoresistance ratio and resistances were obtained with a unique set of intrinsic parameters. Two of these intrinsic parameters are the Curie temperature TC and the density of state (DOS) for itinerant majority and minority electrons ξ(ρM/ρm), which are the eigen parameters of ferromagnetic electrodes. Others are the spin-dependent matrix-element ratio (i.e., |Td|2/|TJ|2 ) and the anisotropic-wavelength-cutoff energy ECγ of spin-wave spectrum in magnetic tunnel junction (MTJ), which are the structure parameters of an MTJ. These intrinsic parameters can be predetermined using the experimental measurement or, in principle, using the first-principle calculation method for an MTJ with the three key layers of FM/I/FM. Furthermore, a series of experimental data for an MTJ, for example, a spin-valve-type MTJ of Ta (5 nm)/Ni79Fe21(25 nm)/lr22Mn78(12 nm)/Co75Fe25(4 nm)/AI(0.8 nm)-oxide/Co75Fe25(4 nm)/Ni79Fe21(20 nm)/Ta (5 nm) in this work, can be self-consistently evaluated and explained using such concise explicit function formulations.An explicit function expression for the bias voltage or/and temperature dependences of tunnel magnetoresistance ratio and resistances were obtained with a unique set of intrinsic parameters. Two of these intrinsic parameters are the Curie temperature TC and the density of state (DOS) for itinerant majority and minority electrons ξ(ρM/ρm), which are the eigen parameters of ferromagnetic electrodes. Others are the spin-dependent matrix-element ratio (i.e., |Td|2/|TJ|2 ) and the anisotropic-wavelength-cutoff energy ECγ of spin-wave spectrum in magnetic tunnel junction (MTJ), which are the structure parameters of an MTJ. These intrinsic parameters can be predetermined using the experimental measurement or, in principle, using the first-principle calculation method for an MTJ with the three key layers of FM/I/FM. Furthermore, a series of experimental data for an MTJ, for example, a spin-valve-type MTJ of Ta (5 nm)/Ni79Fe21(25 nm)/lr22Mn78(12 nm)/Co75Fe25(4 nm)/AI(0.8 nm)-oxide/Co75Fe25(4 nm)/Ni79Fe21(20 nm)/Ta (5 nm) in this work, can be self-consistently evaluated and explained using such concise explicit function formulations.

关 键 词:Magnetic tunnel junction TMR Spin-electron transport Magnon excitation SPIN-POLARIZATION MAGNETOTRANSPORT 

分 类 号:TM281[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象