检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京大学计算机研究所文字信息处理技术国家重点实验室,北京100871
出 处:《计算机学报》2002年第11期1219-1226,共8页Chinese Journal of Computers
摘 要:为了在海量、高维、动态的半结构化数据集上进行有效的相似搜索,该文提出一种采用聚类技术进行索引构建与更新的多路平衡树——CSS-树以及基于CSS-树的相似搜索与动态更新的算法.CSS-树借鉴SS+-树基于聚类进行节点组织与分裂的基本思想,避免了根据坐标维进行分裂时所要求的维不相关性,同时在节点组织、分裂算法和搜索算法等方面进行了改进,提出了新的搜索剪枝策略.实验表明,该结构及算法对海量半结构化数据相似搜索的效率明显优于传统算法.A new index, called CSS-tree, is proposed to organize and search dynamic high-dimension vast semi-structure data set. The CSS-tree is a multi-way balance tree, which is combining the benefit of R-tree and SS-tree to deal with high-dimension vast data sets, and the benefit of M-tree to deal with 'metric space' data sets. This paper details the structure of CSS-tree, whose each inner node is composed of a group of index elements including cover center and cover radius of child tree and every leaf is in same level and all data indices is in leaves. The paper give algorithms for similarity search based CSS-tree both range search and k-NN search, and dynamic update algorithms of the CSS-tree. It describes the simply split policy which reference to CF-tree's split policy of BIRTH, and reorganizing algorithms which using clustering technique to keep the index elements that the similar elements are neighbor in the index tree, and avoid the need of independent between feather values. It also describes how to keep minimum cover space and overlap space. Using simulation data sets and using part of 'Chinese Encyclopedia Database' as data set, which is on XML document set, experiments show that the CSS-tree is close to SS+-tree and M-tree in building tree, but CSS-tree outperforms both SS+-tree and M-tree in similarity search in semi-structured data sets.
关 键 词:半结构化数据 相似搜索 索引 相似索引 聚类 数据挖掘 数据库 多路平衡树
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63