Estimation of the complex frequency of a harmonic signal based on a linear least squares method  

Estimation of the complex frequency of a harmonic signal based on a linear least squares method

在线阅读下载全文

作  者:He Meilin Xiu Yanxia 

机构地区:[1]Guangxi Polytechnic of Construction [2]Institute of Surveying and Mapping,Wuhan

出  处:《Geodesy and Geodynamics》2015年第3期220-225,共6页大地测量与地球动力学(英文版)

基  金:supported by National 973 Project China (2013CB733302,2013CB733305);NSFCs (41174011, 41429401, 41210006, 41128003, 41021061)

摘  要:In this study, we propose a simple linear least squares estimation method(LLS) based on a Fourier transform to estimate the complex frequency of a harmonic signal. We first use a synthetically-generated noisy time series to validate the accuracy and effectiveness of LLS by comparing it with the commonly used linear autoregressive method(AR). For an input frequency of 0.5 m Hz, the calculated deviations from the theoretical value were 0.004‰and 0.008‰ for the LLS and AR methods respectively; and for an input 5 10 6attenuation,the calculated deviations for the LLS and AR methods were 2.4% and 1.6%. Though the theory of the AR method is more complex than that of LLS, the results show LLS is a useful alternative method. Finally, we use LLS to estimate the complex frequencies of the five singlets of the0S2 mode of the Earth’s free oscillation. Not only are the results consistent with previous studies, the method has high estimation precisions, which may prove helpful in determining constraints on the Earth’s interior structures.In this study, we propose a simple linear least squares estimation method(LLS) based on a Fourier transform to estimate the complex frequency of a harmonic signal. We first use a synthetically-generated noisy time series to validate the accuracy and effectiveness of LLS by comparing it with the commonly used linear autoregressive method(AR). For an input frequency of 0.5 m Hz, the calculated deviations from the theoretical value were 0.004‰and 0.008‰ for the LLS and AR methods respectively; and for an input 5 10 6attenuation,the calculated deviations for the LLS and AR methods were 2.4% and 1.6%. Though the theory of the AR method is more complex than that of LLS, the results show LLS is a useful alternative method. Finally, we use LLS to estimate the complex frequencies of the five singlets of the0S2 mode of the Earth’s free oscillation. Not only are the results consistent with previous studies, the method has high estimation precisions, which may prove helpful in determining constraints on the Earth’s interior structures.

关 键 词:Harmonic signal Complex frequency Least squares es 

分 类 号:P315.7[天文地球—地震学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象