轴对称件拉深成形智能化控制过程中参数实时识别的GA-ENN建模  被引量:4

GA-ENN Modeling of Parameter Identification in the Intelligent Control Process for Axisymmetric Workpiece Deep Drawing

在线阅读下载全文

作  者:赵军[1] 郑祖伟[2] 王凤琴[2] 

机构地区:[1]燕山大学,河北省秦皇岛市066004 [2]燕山大学机械工程学院

出  处:《中国机械工程》2003年第1期72-74,共3页China Mechanical Engineering

基  金:国家自然科学基金资助项目 (5 9875 0 74)

摘  要:材料性能参数和摩擦系数的实时识别是实现拉深过程智能化控制的关键。建立了遗传算法与神经网络相结合的识别模型 ( GA- ENN) ,利用遗传算法进行网络权系的训练和优化。给出了网络输入层、输出层和隐层的确定方法以及 GA- ENN模型的学习算法。验证结果表明 ,与 BP网络模型比较 ,GA- ENN模型的学习效率和学习精度均有明显的提高 ,是一种有效的识别模型 ,为实现拉深成形过程的智能化控制奠定了基础。The real-time identification of material properties and friction coefficient is as the key to intelligent control of deep drawing process. Identification using analytic model is only of online but not real-time. BP neural network model can realize real-time identification but its convergent speed is slow and it is liable to fall into local optimal solution. Thus a GE-ENN(genetic algorithm-evolution neural network) model is established to optimize network weight. The determination of input layer , output layer and hidden layer is given, and the training algorithm of GE-ENN model is proposed. Experiments indicate that, compared with BP network model, the training efficiency and precision of GA-ENN model are obviously improved, and the model is effective. It lays the basis of real-time properties identification in intelligent control of deep drawing process.

关 键 词:轴对称件 拉深成形 智能控制 神经网络 遗传算法 

分 类 号:TG386.32[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象