基于双向Hash链的无线传感网络通信节点自愈算法  

A Self healing Algorithm for Communication Nodes in Wireless Sensor Networks Based on Bidirectional Hash Chains

在线阅读下载全文

作  者:李晓薇[1] 李翔宇 LI Xiaowei;LI Xiangyu(Department of Electronic Information,Jinzhong Vocational and Technical College,Jinzhong Shanxi 030600,China;School of Electronic Information,Guilin University Of Electronic Technology,Beihai Guangxi 536002,China)

机构地区:[1]晋中职业技术学院电子信息系,山西晋中030600 [2]桂林电子科技大学北海校区电子信息学院,广西北海536002

出  处:《传感技术学报》2024年第12期2119-2124,共6页Chinese Journal of Sensors and Actuators

基  金:山西省教育科学规划课题项目(GH-17136)。

摘  要:无线传感网络中节点数量突增,增大了出现失效节点的概率,会影响数据传输效率,导致次级节点出现失效现象,为此提出基于双向hash链的无线传感网络通信节点自愈算法。分析无线传感网络节点流量过载现象,构建节点失效裁决模型,找出网络中失效节点;利用质心算法确定失效节点具体位置,将双向hash链和节点失效裁决模型结合起来,实现对失效节点的自愈修复。构建WSN拓扑结构,对所提方法展开仿真测试,对比结果表明所提方法的节点拓扑移动距离平均值为63.5 m,网络流量出口带宽值平均值为583 Mbyte/s,节点自愈耗时平均值为14.2 s,证明该方法具有较高的自愈效率,保证了失效节点自愈效果最优、自愈能力最强。With the increasing of the number of nodes in wireless sensor networks,the probability of node failures has increased,which affects the efficiency of data transmission and can lead to secondary node failures.To address this issue,a self-healing algorithm for wireless sensor network communication nodes based on bidirectional hash chains is proposed.A model for determining node failures is constructed by analyzing network traffic overload,and the faulty nodes are identified.The centroid algorithm is used to determine the specific locations of the failed nodes.By combining the bidirectional hash chain and node failure decision model,the self repair of failed nodes is achieved.The WSN topology structure is constructed,and simulation tests are conducted to compare the results.The average node topology movement distance is 63.5 m,the average network traffic export bandwidth value is 583 Mbyte/s,and the average self-healing time of nodes is 14.2 s,demonstrating that the proposed method has high self-healing efficiency,ensuring the optimal self-healing effect and the strongest self-healing ability for failed nodes.

关 键 词:网络通信 通信节点自愈 双向hsh链 节点失效 质心算法 流量过载 

分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象