基于QoS信息融合技术的无线传感网络容量改进算法研究  

Research on Improved Capacity Algorithm of Wireless Sensor Network Based on QoS Fusion Technology

在线阅读下载全文

作  者:周莹[1] 赵依苇 尉理哲[1] 刘半藤[1] ZHOU Ying;ZHAO Yiwei;YU Lizhe;LIU Banteng(School of Information Sciences and Technology,Zhejiang Shuren University,Hangzhou Zhejiang 310015,China)

机构地区:[1]浙江树人学院信息科技学院,浙江杭州310015

出  处:《传感技术学报》2024年第12期2137-2141,共5页Chinese Journal of Sensors and Actuators

基  金:浙江省“尖兵”“领雁”研发攻关计划项目(2023C03189)。

摘  要:在确保网络容量不受影响的基础上,如何为通信业务提供高质量的服务保障(QoS),已经成为无线传感网络研究的焦点话题。基于Gupta和Kumar等学者提出的经典网络容量模型,整合网络层的QoS参数信息,进而设计一种融合物理层与网络层特性的跨层网络容量计算策略。首先,构建Grover节点状态的数学模型,详细描述网络延迟和节点能量消耗等QoS参数;然后,我们采用D-S证据理论对QoS信息进行整合,从而计算出网络链路的概率。最终,把QoS信息融合修正传统公式,并为跨层网络的容量制定算法。最后,文章构建仿真环境,对经典网络容量算法与跨层网络容量算法进行对比分析。研究结果显示,跨层网络容量算法在稳定性和可靠性方面表现得更为出色。Providing high-quality service guarantee(QoS)has become a focal point of wireless sensor network research while ensuring network capacity is not compromised.By integrating the QoS parameter information of the network layer with the classical network ca-pacity model proposed by Gupta and Kumar,a cross-layer network capacity calculation strategy is then designed,which combines physi-cal and network layer characteristics.Firstly,a mathematical model of the Grover node state is constructed,describing QoS parameters such as network latency and node energy consumption.Then,D-S evidence theory is used to integrate QoS information to calculate the probability of network links.Finally,traditional formulas are modified and algorithms are developed for the capacity of multi-layer net-works.To validate the multi-layer network capacity algorithm,a simulation environment is constructed and the proposed algorithm is compared with the classical network capacity algorithm.The results show that the multi-layer network capability algorithm is more stable and reliable.

关 键 词:网络容量 GROVER算法 服务质量保障 证据理论 

分 类 号:TN911.2[电子电信—通信与信息系统] TN915[电子电信—信息与通信工程] TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象