检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡国旗 吴前胜[2] Cai Guoqi;Wu Qiansheng(Department of Nursing,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Hubei Wuhan 430030,China)
机构地区:[1]华中科技大学同济医学院附属同济医院护理部,武汉430030 [2]华中科技大学同济医学院附属同济医院心脏大血管外科,武汉430030
出 处:《中国体外循环杂志》2024年第6期478-483,共6页Chinese Journal of Extracorporeal Circulation
摘 要:目的分析心血管外科患者在体外循环术后亚谵妄综合征(SSD)的影响因素,建立列线图预测模型并验证其效能,为早期识别该人群的术后SSD提供依据。方法纳入368名心血管外科体外循环术后患者,通过单因素分析和多因素Logistic回归分析探索SSD发生的独立危险因素,建立风险预测模型并构建列线图,采用Bootstrapping法验证模型预测效果。结果48.6%的患者发生SSD。单因素结果显示,年龄、手术时间、心功能分级、美国麻醉医生协会(ASA)麻醉分级、机械通气时间、体外循环时间、术后并发症、以及输注血制品的量对术后SSD的发生具有统计学意义;多因素结果显示,年龄、ASA分级、手术时间、机械通气时间,以及输注血小板的量是SSD的危险因素,SSD风险列线图预测模型中预测曲线和观察曲线基本吻合,曲线下面积=0.795。结论心脏外科体外循环术后SSD发生率较高,构建的列线图预测模型具有较好的准确度和区分度,可用于临床尽早识别高危SSD人群。Objective To identify risk factors for subsyndromal delirium(SSD)in cardiovascular surgery patients undergoing cardiopulmonary bypass(CPB),and develop a nomogram-based risk prediction model to facilitate early recognition of SSD.Methods 368 patients undergoing cardiovascular surgery with CPB were included.Independent risk factors for SSD were identified through univariate and multivariate logistic regression analyses.A risk prediction model was established,and a nomogram was constructed.The model’s predictive performance was validated using bootstrapping.Results SSD occurred in 48.6%of patients.Univariate analysis revealed that age,surgical duration,cardiac function classification,American Society of Anesthesiologists(ASA)classification,mechanical ventilation time,CPB duration,postoperative complications,and volume of blood product transfusion were significantly associated with SSD.Multivariate analysis identified age,ASA classification,surgical duration,mechanical ventilation duration,and platelet transfusion volume as independent risk factors.The prediction curve in the prediction model of SSD risk was basically consistent with the observed curve,with AUC=0.795.Conclusion The incidence of SSD after CPB is high,and the nomogram prediction model has good accuracy and discrimination,which can be used to identify high-risk SSD patients as early as possible.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.47.84