机构地区:[1]北京大学国际医院重症医学科,北京102206
出 处:《中国体外循环杂志》2024年第6期490-496,共7页Chinese Journal of Extracorporeal Circulation
摘 要:目的观察ICU连续肾脏替代治疗(CRRT)患者深静脉血栓形成(DVT)风险列线图模型用于CRRT临床的应用效果。方法回顾性分析2022年4月至2024年4月在北京大学国际医院ICU入住并接受CRRT治疗300例患者的临床资料,随机拆分法按照3∶1比例分为训练集(n=225)和验证集(n=75)。取训练集资料,将其中发生DVT者归入DVT组、其余归入非DVT组,应用单因素、二元logistic回归确定CRRT治疗后DVT发生的独立危险因素,并构建列线图风险预测模型,然后将列线图模型在验证集中加以验证,分别进行受试者工作特征(ROC)曲线、拟合优度检验、校准曲线及临床决策曲线对该模型的效能及临床效用加以评估。结果训练集中发生DVT者56例(24.89%)。验证集有19名患者(25.33%)出现DVT。训练集DVT组与非DVT组的差异主要表现在身体质量指数、D-二聚体、血红蛋白、血小板计数、Ca^(2+)、穿刺方位、超声引导、Caprini风险评估模型结果方面,组间比较存在统计学意义(P<0.05)。二元logistic回归分析发现,D-二聚体、血红蛋白浓度、Caprini风险评估结果是发生DVT的危险因素,血小板计数、血钙浓度、超声引导属于独立保护因素。校准曲线显示,训练集及验证集斜率均接近1。ROC曲线显示,训练集、验证集的列线图预测模型的曲线下面积分别为0.99(95%CI:0.99~1.00)、0.99(95%CI:0.98~1.00),分界值均为0.353。CRRT治疗后DVT风险列线图模型的决策曲线分析显示具有更高的高风险阈值。结论ICU内CRRT患者继发DVT风险的列线图模型构建以D-二聚体、血红蛋白浓度、血小板计数、血钙浓度、超声引导、CRRT前末次Caprini风险评估结果为基础,其临床应用能够起到促进CRRT患者能够获得更高的正向净收益。Objective To observe the clinical application effect of a nomogram model for predicting the risk of deep vein thrombosis(DVT)in ICU patients undergoing continuous renal replacement therapy(CRRT).Methods The clinical data of 300 patients who were admitted to the ICU of Peking University International Hospital from April 2022 to April 2024 were retrospective reviewed and randomized into training set(n=225)and validation set(n=75).The training set was further divided into a DVT group(patients who developed DVT)and a non-DVT group.Univariate and binary logistic regression analyses were applied to identify independent risk factors for DVT after(CRRT),and the nomogram risk prediction model was constructed.Then,the nomogram model was validated in the validation set,and the receiver operating characteristic(ROC)curve,goodness of fit test,calibration curve and clinical decision curve of the model were evaluated respectively.Results 56(24.89%)of DVT occurred in the training set.In the validation set,19 patients(25.33%)developed DVT.Significant differences between the DVT and non-DVT groups in the training set were observed in terms of BMI,D dimer,HGB,Plt,Ca^(2+),puncture orientation,ultrasound guidance,and Caprini risk assessment model scores(P<0.05).Univariate analysis revealed that D-dimer,hemoglobin concentration and Caprini risk assessment model were risk factors for DVT,while platelet count,blood calcium concentration and ultrasound guidance were independent protective factors.The calibration curve showed that the slopes for both the training set and validation sets were close to 1.The ROC curve results showed that the AUC of the nomogram prediction model in the training and validation sets were 0.99(95%CI:0.99-1.00)and 0.99(95%CI:0.98-1.00),respectively,with cut-off values of 0.353 for both.The DCA decision curve of the DVT risk nomogram model after CRRT showed higher high-risk thresholds.Conclusion The nomogram model for predicting the risk of secondary DVT in ICU patients undergoing CRRT is based on the results of
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...