检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢辉 段萌[1] 武伟[1] 张运强[1] 潘国庆[1] 王炜强[1] 穆世博 XIE Hui;DUAN Meng;WU Wei;ZHANG Yunqiang;PAN Guoqing;WANG Weiqiang;MU Shibo(China airborne missile academy,Luoyang Henan 471009,China;The First Military Representative Office of Air Force Equipment Department in Luoyang,Luoyang Henan 471009,China)
机构地区:[1]中国空空导弹研究院,河南洛阳471009 [2]空装驻洛阳地区第一军事代表室,河南洛阳471009
出 处:《激光杂志》2024年第12期1-15,共15页Laser Journal
基 金:国家航空科学基金(No.2023M037012001)。
摘 要:快照压缩成像技术可以在单次曝光成像获得目标的三维空间-光谱信息,相对于传统的扫描式成像方式,在针对运动目标的检测与识别中优势显著。伴随着信息理论与技术的发展和计算机处理性能的提升,计算成像逐渐成为解决光学成像问题的关键技术之一。通过建立成像设备的物理模型并对后端处理进行数学优化,可以突破成像模型和探测器的局限,将传统的二维成像推广至更多的观测维度。这篇文章从空间编码、波长编码和相位编码三个方面综述基于编码压缩的快照式高光谱成像技术的研究现状,归纳并分析了传统方法和深度学习方法的发展趋势,并对基于编码压缩的快照式高光谱成像技术的发展进行展望。Snapshot compression imaging technology can obtain the three-dimensional spatial-spectral information from the target within a single exposure imaging,which has a significant advantage in the detection and identification for moving targets compared with the traditional scanning imaging method.With the development of information technology and computer processing performance,computational imaging has gradually become one of the most important technologies for solving optical imaging problems.By building a physical model of the imaging device and mathematically optimizing the back-end processing,which can break through the limitations of the imaging model and detector,the traditional two-dimensional imaging can be extended to more observation dimensions.In this paper,the current research status of snapshot hyperspectral imaging technology based on coding compression is summarized from three aspects:spatial coding,wavelength coding and phase coding.And we summarize and analyze the development trend of traditional methods and deep learning methods,as well as look forward to the development of snapshot hyperspectral imaging technology based on coding compression.
关 键 词:光谱成像 快照压缩成像 计算成像 孔径编码 深度学习
分 类 号:TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15