基于改进Canny-Devernay亚像素边缘检测算法的接触角测量方法研究  

Research on contact angle measurement method based on improved Canny-Devernay sub-pixel edge detection algorithm

在线阅读下载全文

作  者:张毛迪 王军[1,2] ZHANG Maodi;WANG Jun(School of Electronics and Information Engineering,Suzhou University of Science and Technology,Suzhou Jiangsu 215009,China;Changchun Institute of Optical,Fine Mechanics and Physics,Chinese Academy of Science,Changchun 130033,China)

机构地区:[1]苏州科技大学电子与信息工程学院,江苏苏州215009 [2]中国科学院长春光学精密机械与物理研究所,长春130033

出  处:《激光杂志》2024年第12期74-80,共7页Laser Journal

基  金:“十四五”江苏省重点学科资助(No.2021135);江苏省研究生科研创新项目(No.KYCX17_2060)。

摘  要:针对传统Canny算法对液滴边缘检测精度不足,导致接触角测量误差较大的问题,提出一种改进Canny-Devernay亚像素边缘检测算法。该算法对传统Canny算法进行改进,借助快速引导滤波替代高斯滤波,通过基于PLIP模型的四方向梯度算子计算梯度与方向,并采用一种局部最大类间方差法实现自适应阈值选择。将改进后的Canny算法与Devernay校正算法结合,最终实现亚像素级的边缘检测。实验证明,与传统Canny算法相比,改进后的算法在液滴边缘信息保留上更具优势。将基于该算法的接触角测量方法用接触角标准片检测时,其绝对误差和方差均值最低可达到0.010°与0.009°。To solve the problem that traditional Canny algorithm is not accurate to detect the edge of a drop,which leads to a large contact angle measurement error,this paper proposes an improved Canny-Devernay subpixel edge detection algorithm.The algorithm improves traditional Canny algorithm by replaceing gaussian filter with fast-guided filter,calculateing gradient and direction through the operator based on PLIP model,and adopting a local maximum inter-class variance method to achieve adaptive threshold selection.Finally,the improved Canny algorithm is combined with Devernay correction algorithm to realize sub-pixel edge detection.Experiments show that compared with the traditional Canny algorithm,the improved algorithm has more advantages in retaining droplet edge information.When the contact angle measurement method based on this algorithm is detected with a contact angle standard chip,the absolute error and mean of variance can reach as low as 0.011°and 0.009°.

关 键 词:接触角测量 改进Canny算法 Devernay校正算法 亚像素边缘检测 

分 类 号:TN209[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象