检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡飘 尹雯婕 罗炫 王云媛 HU Piao;YIN Wenjie;LUO Xuan
机构地区:[1]吉首大学数学与统计学院,湖南吉首416000
出 处:《智慧农业导刊》2025年第1期11-17,共7页JOURNAL OF SMART AGRICULTURE
摘 要:在数字经济时代,传统农业面临环境污染、低生产效率和资源浪费等挑战。智慧农业通过大数据、物联网和人工智能等技术进行全程监控和优化管理,旨在提高生产效率和质量。根据国务院印发的《“十四五”数字经济发展规划》和中商产业研究院的数据,智慧农业具有显著的发展潜力。然而,当前智慧农业仍面临生产效率低和市场供需不平衡等问题。该文探讨大数据算法如何在智慧农业中发挥作用,特别是如何通过时间序列、遗传算法、回归分析等算法解决自动化水平低、市场预测不及时的问题。同时,该文提出相应的策略和解决方案,期望为智慧农业的持续推进提供实质性的建议和参考。In the digital economy era,traditional agriculture faces challenges such as environmental pollution,low production efficiency and resource waste.Smart agriculture conducts full-process monitoring and optimization management through technologies such as big data,Internet of Things and artificial intelligence,aiming to improve production efficiency and quality.According to the State Council's"14th Five-Year Plan for Digital Economy Development"and data from the China Business Industry Research Institute,smart agriculture has significant development potential.However,current smart agriculture still faces problems such as low production efficiency and unbalanced market supply and demand.This paper explores how big data algorithms can play a role in smart agriculture,especially how to solve the problems of low automation level and untimely market forecasts through algorithms such as time series,genetic algorithms,and regression analysis.At the same time,this paper proposes corresponding strategies and solutions,hoping to provide substantive suggestions and reference for the continuous advancement of smart agriculture.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.226.0