检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈佳丽 赵国祥 颜亚玉 夏万厅 李巧红[1,3] 张健 CHEN Jiali;ZHAO Guoxiang;YAN Yayu;XIA Wanting;LI Qiaohong;ZHANG Jian(State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China;College of Chemistry,Fuzhou University,Fuzhou 350108,China;Fujian College,University of Chinese Academy of Sciences,Fuzhou 350002,China)
机构地区:[1]中国科学院福建物质结构研究所结构化学国家重点实验室,福州350002 [2]福州大学化学学院,福州350108 [3]中国科学院大学福建学院,福州350002
出 处:《无机化学学报》2025年第1期155-164,共10页Chinese Journal of Inorganic Chemistry
基 金:国家重点研发计划(No.2021YFA1501500)资助。
摘 要:使用机器学习进行高通量筛选是一种新的材料筛选方法,我们结合巨正则蒙特卡罗(GCMC)模拟和机器学习方法研究了沸石分子筛对气体的吸附。使用GCMC模拟方法,计算了12种电子气体在240种纯硅沸石分子筛上的绝对吸附量,并通过Zeo++程序分析了沸石分子筛的17种结构特征。在此基础上,建立了2种机器学习模型:多元线性回归模型和随机森林回归模型,旨在预测沸石分子筛对各类电子气体的吸附能力。同时,通过相关性分析和模型性能评估,揭示了不同结构特征对气体吸附容量的影响程度,并对模型的稳定性和预测精度进行了讨论。Using machine learning for high‑throughput screening is a new material screening method.The gas adsorption on zeolite molecular sieves was studied using the grand canonical Monte Carlo(GCMC)simulation and machine learning methods.The GCMC simulation method was used to calculate the absolute adsorption capacity of 12 types of electron gases on 240 varieties of silica zeolite molecular sieves.In comparison,the Zeo++program was employed to analyze 17 types of structural characteristics of these zeolite molecular sieves.On this basis,multiple linear regression and random forest regression were established to predict the adsorption capacity of zeolite molecular sieves for electronic gases.Through correlation analysis and model performance evaluation,the impact degree of different structural characteristics on gas adsorption capacity was revealed,and the stability and prediction accuracy of the model were discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46