检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭焱 吕恒 丁春玲 袁晨智 金锐博[1] GUO Yan;LYU Heng;DING Chunling;YUAN Chenzhi;JIN Ruibo(Hubei Key Laboratory of Optical Information and Pattern Recognition,Wuhan Institute of Technology,Wuhan 430205,China)
机构地区:[1]武汉工程大学,光学信息与模式识别湖北省重点实验室,武汉430205
出 处:《物理学报》2025年第1期151-158,共8页Acta Physica Sinica
基 金:国家自然科学基金(批准号:92365106,12074299);湖北省自然科学基金杰出青年项目(批准号:2022CFA039)资助的课题.
摘 要:分数阶涡旋光束具有分数轨道角动量(fractional orbital angular momentum,FOAM)模式,理论上可以无限增加传输容量,因此在光通信领域具有巨大的应用前景.然而,分数阶涡旋光束在自由空间传播时,螺旋相位的不连续性使其在实际应用中容易受到衍射的影响,进而影响FOAM阶次识别的准确度,严重制约基于FOAM的实际应用.如何实现有衍射条件下的分数阶涡旋光的机器学习识别,目前仍是一个亟需解决且少见诸报道的问题.本文提出一种基于残差网络(residual network,ResNet)的深度学习(deep learning,DL)方法,用于精确识别分数阶涡旋光衍射过程的传播距离和拓扑荷值.实验结果表明,该方法可以在湍流条件下识别传播距离为100 cm,间隔为5 cm,模式间隔为0.1的FOAM模式,准确率为99.69%.该技术有助于推动FOAM模式在测距、光通信、微粒子操作等领域的实际应用.Fractional-order vortex beams possess fractional orbital angular momentum(FOAM)modes,which theoretically have the potential to increase transmission capacity infinitely.Therefore,they have significant application prospects in the fields of measurement,optical communication and microparticle manipulation.However,when fractional-order vortex beams propagate in free space,the discontinuity of the helical phase makes them susceptible to diffraction in practical applications,thereby affecting the accuracy of OAM mode recognition and severely limiting the use of FOAM-based optical communication.Achieving machine learning recognition of fractional-order vortex beams under diffraction conditions is currently an urgent and unreported issue.Based on ResNetA,a deep learning(DL)method of accurately recognizing the propagation distance and topological charge of fractional-order vortex beam diffraction process is proposed in this work.Utilizing both experimentally measured and numerically simulated intensity distributions,a dataset of vortex beam diffraction intensity patterns in atmospheric turbulence environments is created.An improved 101-layer ResNet structure based on transfer learning is employed to achieve accurate and efficient recognition of the FOAM model at different propagation distances.Experimental results show that the proposed method can accurately recognize FOAM modes with a propagation distance of 100 cm,a spacing of 5 cm,and a mode spacing of 0.1 under turbulent conditions,with an accuracy of 99.69%.This method considers the effect of atmospheric turbulence during spatial transmission,allowing the recognition scheme to achieve high accuracy even in special environments.It has the ability to distinguish ultra-fine FOAM modes and propagation distances,which cannot be achieved by traditional methods.This technology can be applied to multidimensional encoding and sensing measurements based on FOAM beam.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7