检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王天哲 WANG Tianzhe(China University of Geosciences(Beijing),Beijing 100083,China)
出 处:《华北地震科学》2024年第4期15-20,共6页North China Earthquake Sciences
基 金:国家自然科学基金面上项目(41974060)。
摘 要:以BiLSTM网络为基础识别框架,通过在BiLSTM网络结构中引入U型卷积神经网络进行改进,并采用改进的BiLSTM网络对地震相进行识别,实现了地震P波和S波震相的精确识别。仿真结果表明:该方法可有效、准确地识别地震P波和S波震相,平均识别正确率为90.01%,平均漏检率和均方根误差分别为11.00%和0.23,相较于BiLSTM网络以及常用地震相识别MEA-BP神经网络模型和CNN模型,该方法对地震相的识别精度更高,具有明显的优越性,为实现地震相的精确识别提供了参考。To improve the accuracy of seismic phase identification,a deep learning-based seismic phase identification method is proposed.This method is based on the BiLSTM network recognition framework,improved by introducing a U-shaped convolutional neural network into the BiLSTM network structure.The improved BiLSTM network was used to identify seismic phases,achieving accurate identification of seismic P-wave and S-wave phases.The simulation results show that this method can effectively and accurately identify seismic P-wave and S-wave phases,with an average recognition accuracy of 90.01%,an average missed detection rate of 11.00%,and a root mean square error of 0.23.Compared with BiLSTM network,commonly used seismic phase recognition MEA-BP neural network models,and CNN models,this method has higher recognition accuracy for seismic phases and obvious advantages,providing a reference for achieving accurate identification of seismic phases.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170