检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩俊艳[1,2] 赵文乐 帅义 侯本伟 郭富强[3] 杜修力 HAN Junyan;ZHAO Wenle;SHUAI Yi;HOU Benwei;GUO Fuqiang;DU Xiuli(Beijing University of Technology,Key Laboratory of Urban and Engineering Safety and Disaster Reduction of Ministry of Education,Beijing 100124,China;China Ptroleum Uiversity(Beijing),Safety and the Marine Engineering Institute,Beijing 102249,China;Linzhou College of Architectural Technology,Anyang 450046,China)
机构地区:[1]北京工业大学城市与工程安全减灾教育部重点实验室,北京100124 [2]中国石油大学(北京)安全与海洋工程学院,北京102249 [3]林州建筑职业技术学院,河南安阳450046
出 处:《防灾减灾工程学报》2024年第6期1386-1397,共12页Journal of Disaster Prevention and Mitigation Engineering
基 金:北京市自然科学基金(8212005);国家重点研发项目(2022YFC3004300);国家自然科学基金项目(52220105011)资助。
摘 要:含腐蚀缺陷管道在断层作用下的失效往往发生在管道腐蚀区域等管道结构力学性能薄弱部位。为深入探讨含腐蚀缺陷管道在断层错动时对管道失效模式的影响,基于弹塑性有限元理论,建立含腐蚀缺陷管道横穿逆断层的三维模型。在此基础上探究了腐蚀位置、腐蚀深度及断层错动量等参数对逆断层作用下管道局部腐蚀区域、管体应力应变分布及其失效模式的影响。结果表明:断层错动时管道的主要失效模式表现为断层下盘管道顶部和断层上盘管道底部局部屈曲破坏,断层下盘管道底部和断层上盘管道顶部处于受拉状态;上盘管道顶部发生局部腐蚀,管道的主要失效模式表现为断层上盘管道顶部拉伸破坏和管道底部局部屈曲破坏控制的双失效模式;下盘管道顶部发生局部腐蚀,管道的主要失效模式仍为屈曲破坏失效,但在较小断层错动量下管道已发生屈曲破坏失效;不同腐蚀位置对腐蚀管道的应力分布影响显著,局部腐蚀缺陷导致的壁厚减薄削弱了管道抵抗变形的能力,断层下盘管道顶部腐蚀比上盘管道顶部腐蚀对管道抗震性能退化的影响更大,进而影响上盘管道失效模式的变化;随着腐蚀程度的加深,断层上盘管道局部腐蚀引起的应变呈近似线性增长的趋势,而断层下盘处腐蚀引起的应变呈非线性增长的趋势。Under the action of faults,the failure of pipelines with corrosion defects mainly occurs in weak parts of pipeline structure,such as corrosion areas.To explore the impact of corrosion-defect pipelines on the failure mode during fault displacement,a three-dimensional model of corrosion-defect pipelines crossing a reverse fault was established based on elastic-plastic finite element theory. On this basis, parameters such as corrosion position, corrosion depth, and fault dislocation were explored re-garding their influence on local corrosion areas, pipe stress-strain distribution, and failure modes under the action of the reverse fault. The results showed that the main failure mode of the pipeline during fault displacement was local buckling damage at the top of the downthrown segment and the bottom of the upheld segment, with the bottom of the downthrown segment and the top of the upheld segment in tension. When the top of the upheld pipe segment was locally corroded, the main failure mode of the pipeline was a dual failure mode of tensile failure at the top of the upheld segment and local buckling failure at the bottom. When the top of the downthrown pipe segment was locally corroded, the main failure mode remained buckling failure, but the pipeline experienced buckling failure at a smaller fault dislocation. Different corrosion locations significantly affected the stress distribution of the corroded pipeline. Corrosion at the top of the downthrown pipe segment had a greater impact on the degradation of the pipeline's seismic performance compared to corrosion at the top of the upheld pipe segment, which in turn influenced the changes in the failure mode of the upheld pipe segment. As corrosion deep-ened, the strain caused by local corrosion at the top of the upheld pipe segment followed a nearly lin-ear growth trend, while the strain caused by corrosion at the bottom of the downthrown pipe segment followed a nonlinear growth trend.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7