检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄兆岭 黄彩萍 冯时 于江龙 陈永雍 韦启钦 胡鹏飞 HUANG Zhaoling;HUANG Caiping;FENG Shi;YU Jianglong;CHEN Yongyong;WEI Qiqin;HU Pengfei(School of Mechanical and Electrical Engineering,Guilin University of Electronic Technology,Guangxi Guilin 541004,China;Guizhou Equipment Manufacturing Polytechnic,Guiyang 551400,China;Zhejiang Haiyan Liyuan Environmental Protection Technology Co.,Ltd.,Zhejiang Jiaxing 314300,China;Guizhou Changjiang Automobile Co.,Ltd.,Guiyang 550005,China)
机构地区:[1]桂林电子科技大学机电工程学院,广西桂林541004 [2]贵州装备制造职业学院,贵阳551400 [3]浙江海盐力源环保科技股份有限公司,浙江嘉兴314300 [4]贵州长江汽车有限公司,贵阳550005
出 处:《包装工程》2025年第1期293-304,共12页Packaging Engineering
基 金:中国博士后科学基金项目(2024M750802);贵州省科技计划(黔科合支撑〔2024〕一般070);贵州省科技计划(黔科合支撑〔2022〕一般165);贵阳市科技计划(筑科合同〔2022〕3-8号)。
摘 要:目的基于多层生瓷片低温烧结而成的新型LTCC陶瓷基板,以提高T/R组件液冷散热性能为目的,设计一种基于金属微柱阵列结构的微通道散热器,形成热源、梯度界面层、内嵌微柱阵列以及液冷流道的散热网络结构,解决T/R组件中高密度芯片阵列的高效热管控问题。方法采用分步有限元仿真方法模拟微通道散热器的传热传质过程,通过参数控制变量法研究金属微柱阵列的尺寸大小以及梯度界面层对T/R组件中散热性能的影响,优化金属微柱阵列结构尺寸和银铜合金梯度界面层涂层结构。结果基于多热源散热网络理论优化的金属导热微柱阵列结构,能使液冷散热微通道界面热源最高温度从126.96℃降至58.89℃;基于整齐排列策略的微柱阵列结构,温度降低至52.478℃,降幅为10.88%;金属导热微柱阵列银SSP铜合金梯度界面层温升降低到53.211℃,热应变降低1.3%,热应力降低幅度为3.7%。结论通过多热源散热网络结构优化设计分析,金属导热微柱阵列微通道散热网络能力得到极大的提高,T/R组件的换热性能更优。Based on the novel LTCC porcelain substrate formed through the low-temperature sintering of multi-layer green porcelain chips,the work aims to design a microchannel heat sink based on the structure of metal micropillar array to improve liquid cooling and heat dissipation performance of T/R modules and form a heat dissipation network structure of heat source,gradient interface layer,embedded micropillar array and liquid cooling channel to solve the problem of efficient thermal control of high-density chip arrays in T/R modules.The step-by-step finite element analysis method was used to simulate the heat and mass transfer process.The parameter controlled variable method was used to study the size of metal micropillar array and the effect of gradient interface layer on heat dissipation performance.The size of micropillar array structure and the gradient interface layer coating structure were optimized.The micropillar array structure optimized based on the theory of multiple heat sources heat dissipation network could reduce the maximum temperature of the interface heat source of liquid cooled microchannel from 126.96℃to 58.89℃.The size parameters of the micropillar array structure based on the neat arrangement strategy were reduced to 52.478℃,a decrease of 10.88%.The temperature rise of gradient interface layer of the metal thermal conductive micropillar array silver copper alloy decreased to 53.211℃,the thermal strain decreased by 1.3%,and the thermal stress decreased by 3.7%.Through the optimization design and analysis of the multiple heat sources dissipation network structure,the microchannel heat dissipation network capability of metal thermal conductive micropillar array has been greatly improved,and the heat exchange performance of the T/R modules is better.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49