检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨健 王玮[1] 周强 付炳喆 任国瑞 YANG Jian;WANG Wei;ZHOU Qiang;FU Bingzhe;REN Guorui(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China;State Grid Gansu Electric Power Company Electric Power Science Research Institute,Lanzhou 730070,Gansu Province,China)
机构地区:[1]华北电力大学控制与计算机工程学院,北京102206 [2]国网甘肃省电力公司电力科学研究院,甘肃兰州730070
出 处:《动力工程学报》2025年第1期87-95,105,共10页Journal of Chinese Society of Power Engineering
基 金:国家自然科学基金资助项目(52107091)。
摘 要:为解决高比例新能源接入背景下无功补偿不充分的问题,提出了一种计及风电场无功支撑性能的多目标优化调度策略。从电力系统运行的电压稳定性、无功裕度安全性和功率损耗经济性方面分析了风电场无功支撑性能,构建了考虑多指标满意度区间的二次函数组,建立了系统多区间动态优化模型;同时,针对无功优化调度问题的非线性、多约束等特征,提出了自适应混沌差分磷虾群算法(A-CDKH);最后,通过修改的IEEE30节点模型和某实际风电场模型上的仿真结果证明了所提策略的优势性及有效性。结果表明:相比于多目标模糊优化模型,采用多目标动态优化模型所求得的电压偏差指标最高可达到32.99%的优化程度;在电压偏差指标上,A-CDKH相比于其他算法最多能优化75.94%。In order to solve the problem of inadequate reactive power compensation under the background of high proportion of new energy resources access,a multi-objective optimal dispatch strategy considering reactive power support performance of wind farm was proposed.The reactive power support performance of wind farm was analyzed from the aspects of voltage stability,reactive power margin safety and power loss economy of the power system operation.A quadratic function group considering multi-objective satisfaction interval was constructed,and a multi-interval dynamic optimization model of the system was established.The adaptive chaotic differential krill herd algorithm(A-CDKH)was proposed to address the nonlinear and multi-constraint characteristics of the reactive power optimal dispatch problem.Finally,the advantages and effectiveness of the proposed strategy were proved through the simulation results of the modified IEEE30-node model and an actual wind farm model.Results show that,compared with the multi-objective fuzzy optimization model,the maximum voltage deviation index obtained by the multi-objective dynamic optimization model can reach 32.99%optimization degree.The A-CDKH can optimize 75.94%compared with other algorithms in the voltage deviation index.
关 键 词:新能源 风电场 无功优化调度 指标动态优化 自适应混沌差分磷虾群算法
分 类 号:TK229.2[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.118.113