检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨海能 唐杰 邵武[2] 刘白杨 陈日恒[2] Yang Haineng;Tang Jie;Shao Wu;Liu Baiyang;Chen Riheng(School of Mechanical and Energy Engineering,Shaoyang University,Shaoyang 422000,China;Hunan Provincial Key Laboratory of Multi-Energy System Grid Operation and Control(Shaoyang University),Shaoyang 422000,China;School of Automotive and Intelligent Manufacturing,Shaoyang Polytechnic,Shaoyang 422000,China)
机构地区:[1]邵阳学院机械与能源工程学院,邵阳422000 [2]多电源地区电网运行与控制湖南省重点实验室(邵阳学院),邵阳422000 [3]邵阳职业技术学院汽车与智能制造学院,邵阳422000
出 处:《太阳能学报》2024年第12期416-425,共10页Acta Energiae Solaris Sinica
基 金:湖南省自然科学基金(2022JJ50206,2023JJ50263);邵阳学院研究生创新项目(CX2023SY060)。
摘 要:为提升风电场原始数据中异常数据的识别精度,提出一种结合规则库与PRRL模型的风电场数据清洗方法。首先依据风电场装机容量等参数建立规则库,提高数据集中正常数据占比。其次,以RANSAC稳健回归算法为核心,线性回归模型为基础,将风速数据作为输出,同时扩展输入变量的多项式特征来捕捉风速与功率之间的非线性关系,构建PRRL稳健回归模型。该模型经过规则库处理后的数据训练,可有效识别原始数据中的异常数据。通过对湖南某风电场的实例数据进行应用测试,结果显示该方法在处理异常数据占比较高数据时,能有效识别其中的异常数据,并降低风电功率预测模型的预测误差。In order to improve the identification accuracy of abnormal data in the original data of wind farms,a wind farm data cleaning method combining a rule base and the PRRL model is proposed.First,a rule base is established based on parameters such as the installed capacity of the wind farm to increase the proportion of normal data in the dataset.Second,the PRRL robust regression model is constructed using the RANSAC robust regression algorithm as the core and the linear regression model as the foundation,taking wind speed data as the output and expanding the polynomial features of input variables to capture the nonlinear relationship between wind speed and power.The model is trained on data processed by the rule base,effectively identifying abnormal data in the original dataset.Application testing using sample data from a wind farm in Hunan shows that this method can effectively identify abnormal data when processing the data with a high proportion of abnormal data,and reduce the prediction error of the wind power forecasting model.
关 键 词:风电场 数据清洗 异常检测 规则库 回归分析 稳健回归分析
分 类 号:TK81[动力工程及工程热物理—流体机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15