公共建筑辐射空调能耗机器学习动态评价模型  

Machine Learning Dynamic Evaluation Model for Energy Consumption of Radiant Air Conditioning in Public Buildings

在线阅读下载全文

作  者:巨健 俞文瑾 曹敏 尹璐 弋欣 JU Jian;YU Wenjin;CAO Min;YIN Lu;YI Xin(State Grid Shaanxi Electric Power Co.,Ltd.,Xi’an 710051,China;Marketing Service Center of State Grid Shaanxi Electric Power Co.,Ltd.(Metrology Center),Xi’an 710051,China)

机构地区:[1]国网陕西省电力有限公司,陕西西安710051 [2]国网陕西省电力有限公司营销服务中心(计量中心),陕西西安710051

出  处:《微型电脑应用》2024年第12期174-178,共5页Microcomputer Applications

摘  要:为了使公共建筑辐射空调更加节能,需合理评估空调能耗变化,为此,提出公共建筑辐射空调能耗机器学习动态评价模型。机器学习的空调能耗动态评价模型,采用基于均值漂移聚类的数据清洗算法剔除异常数据,保留正常数据,并将其输入KNN填充算法,补充空调能耗数据集中缺失的数据点,使数据更加完整;将处理完的有效数据输入Adaboost-BP算法,不断迭代后,分类空调能耗预测数据,动态评价公共建筑辐射空调能耗。经实验验证,该模型在预测空调用电量时相对误差保持在1%及以下,可以实现精准的用电量分析,还可有效预测不同季度下的空调热负荷、天然气总消耗、二氧化碳排放量等多种能耗,实现公共建筑辐射空调的合理评价。In order to make radiant air conditioning in public buildings more energy-saving,it is necessary to reasonably evaluate the change of air conditioning energy consumption.Therefore,a machine learning dynamic evaluation model of energy consumption for radiant air conditioning in public buildings is proposed.This paper designs a dynamic evaluation model of air conditioning energy consumption based on machine learning,and uses a data cleaning algorithm based on mean shift clustering to eliminate abnormal data,retain normal data,input them into KNN filling algorithm,and supplement the missing data points in the air conditioning energy consumption data set to make the data more complete.The processed effective data are transmitted to the Adaboost-BP algorithm.After continuous iteration,the predicted data of air conditioning energy consumption are classified to dynamically evaluate the radiant air conditioning energy consumption in public buildings.Experiments show that the relative error of this model in predicting air conditioning power consumption is kept at 1%and below,which can achieve accurate power consumption analysis,and can effectively predict air conditioning heat load in different seasons,total natural gas consumption,carbon dioxide emissions and other energy consumption,so as to achieve a reasonable evaluation of radiant air conditioning in public buildings.

关 键 词:公共建筑 辐射空调 机器学习 动态评价 评价模型 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] TU17[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象