检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑志勇 陈田原 胡哲[2] 许群 ZHENG Zhiyong;CHEN Tianyuan;HU Zhe;XU Qun(Institute of Mathematics,Henan Academy of Sciences,Zhengzhou 450046,China;School of Mathematics,Renmin University of China,Beijing 100872,China)
机构地区:[1]河南省科学院数学研究所,郑州450046 [2]中国人民大学数学学院,北京100872
出 处:《河南科学》2025年第1期90-98,共9页Henan Science
摘 要:随着全国统一电力市场的逐步建设,电价预测领域吸引了越来越多的学者关注。开发高效、精准的短期电价预测模型,不仅能够为电力现货市场的买卖双方提供决策支持,还能提升各方的风险控制能力,从而为建立高效统一的电力市场提供量化支撑。由于电力价格有随机性大、波动性高和时效性强等特点,将机器学习方法应用在短期电价预测领域能够综合考虑多方因素,能在较短的时间内拟合较为复杂的非线性电价数据,得到更为精准的预测结果。本文对基于机器学习的短期电力价格预测方法进行了综述,深入分析了各类方法在不同情境下的预测效果、适用性及其优势与不足,并对未来研究方向进行了展望。With the gradual construction of the national unified electricity market,the field of electricity price forecasting has attracted more and more attention from scholars.The development of efficient and accurate short-term electricity price prediction models can not only provide decision support for buyers and sellers in the electricity spot market,but also enhance the risk control ability of all parties,thus providing quantitative support for the establishment of an efficient and unified electricity market.Due to the large randomness,high volatility and strong timeliness of electricity prices,the application of machine learning methods in the field of short-term electricity price prediction can take into account a variety of factors,and can fit the more complex nonlinear price data in a shorter period of time to obtain more accurate prediction results.This paper provides an overview of the short-term electricity price prediction methods based on machine learning methods,analyzes the prediction effect and applicability of each type of method in different contexts and their advantages and shortcomings,and and looks forward to the future research direction.
关 键 词:电力现货市场 电价预测 机器学习 深度学习 Transformer模型
分 类 号:F426.61[经济管理—产业经济] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43