检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Guobao Zhao Xi Zheng Xiao Huang Yijun Lu Zhong Chen Weijie Guo
机构地区:[1]Department of Electronic Science,Xiamen University,Xiamen 361000,China
出 处:《Frontiers of Optoelectronics》2024年第4期81-90,共10页光电子前沿(英文版)
基 金:National Natural Science Foundation of China(Grant Nos.62275227,62274138,and 11904302);Project of Ministry of Industry and Information Technology of China(Grant No.246);Science and Technology Project of Fujian Province(Grant Nos.2023H4028 and 2023H6038);Key Research and Industrialization Projects of Technological Innovation of Fujian Province(Grant No.2023G043);Shenzhen Science and Technology Program(Grant No.JCYJ20220530143407017).
摘 要:Mini-LED backlight has emerged as a promising technology for high performance LCDs,yet the massive detection of dead pixels and precise LEDs placement are constrained by the miniature scale of the Mini-LEDs.The high-resolution network(Hrnet)with mixed dilated convolution and dense upsampling convolution(MDC-DUC)module and a residual global context attention(RGCA)module has been proposed to detect the quality of vehicular Mini-LED backlights.The proposed model outperforms the baseline networks of Unet,Pspnet,Deeplabv3+,and Hrnet,with a mean intersection over union(Miou)of 86.91%.Furthermore,compared to the four baseline detection networks,our proposed model has a lower root-mean-square error(RMSE)when analyzing the position and defective count of Mini-LEDs in the prediction map by canny algorithm.This work incorporates deep learning to support production lines improve quality of Mini-LED backlights.
关 键 词:Mini-LED Automated optical inspection Deep learning DISPLAY
分 类 号:U463.6[机械工程—车辆工程] TN873.93[交通运输工程—载运工具运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31