检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王福荣[1] WANG Furong(Shaanxi Technical College of Finance and Economics,Xianyang 712000,China)
出 处:《系统仿真技术》2024年第3期313-316,共4页System Simulation Technology
摘 要:为提高企业资源规划效率及生产周期预测准确率,设计了一种基于密度峰值聚类的网络学习模型。该学习方法通过寻找密度峰值来估计网络参数,利用基于MapReduce的并行过程训练网络,从而提升网络训练效率及预测准确度。通过案例分析,所提方法的平均绝对偏差(mean absolute dviation,MAD)和标准差(standard deviation,SD)分别达到2.25×10^(-4)和1.78×10^(-4)。In order to improve the efficiency of enterprise resource planning and the accuracy of production cycle prediction,a network learning model based on density peak clustering is designed.In this learning method,the network parameters are estimated by searching for the density peak,and the parallel process based on MapReduce is used to train the network,so as to improve the network training efficiency and prediction accuracy.In case analysis,the standard deviation and mean absolute dviation of the proposed method reach 2.25×10^(−4) and 1.78×10^(−4) respectively.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222