检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周绍奇 卜祥宁 陈煜冉[3] 倪超 毛玉强[4] 谢广元 ZHOU Shaoqi;BU Xiangning;CHEN Yuran;NI Chao;MAO Yuqi'ang;XIE Guangyuan(Key Laboratory of Coal Processing and Efficient Utilization(Ministry of Education),China University of Mining and Technology,Xuzhou 221116,Jiangsu,China;School of Chemical Engineering and Technology,China University of Mining and Technology,Xuzhou 221116,Jiangsu,China;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China;Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,China)
机构地区:[1]中国矿业大学煤炭加工与高效洁净利用教育部重点实验室,江苏徐州221116 [2]中国矿业大学化工学院,江苏徐州221116 [3]郑州大学材料科学与工程学院,郑州450001 [4]昆明理工大学国土资源工程学院,昆明650093
出 处:《有色金属(选矿部分)》2025年第1期13-20,74,共9页Nonferrous Metals(Mineral Processing Section)
基 金:国家自然科学基金资助项目(52204296)。
摘 要:微细粒矿物由于粒径小、质量轻,在浮选过程中难以与气泡充分矿化,导致回收率显著降低,限制了矿物资源的高效利用。为解决这一问题,研究者提出通过增大颗粒表观直径以提高颗粒与气泡碰撞概率,从而增强矿化效率的策略,这一策略已在一定程度上通过载体浮选、油团聚浮选和絮凝浮选等传统技术得以实现。然而,传统技术在实际应用中面临工艺复杂、成本高、操作稳定性差等挑战,限制了其在大规模工业化生产中的应用。近年来,微纳米气泡及外场(如超声驻波场和磁场)强化实现的疏水团聚技术引起了广泛关注。这些新技术通过创新矿化机制,显著提高了微细粒矿物与气泡的结合效率。微纳米气泡通过其高比表面积和独特的物理化学特性,增强了微细粒矿物颗粒的聚团效应和与浮选气泡的结合效率,从而显著提高浮选回收率。超声驻波场技术通过声辐射力驱动颗粒聚集,增加颗粒表观直径,进一步优化了矿化效果。磁场技术则通过加入磁性颗粒,使微细粒矿物在外加磁场的作用下形成较大聚集体,从而增加颗粒与气泡的碰撞概率,显著提升浮选效率。这些新兴技术不仅提高了浮选回收率,还在操作稳定性和经济效益方面展现出明显的优势。Fine mineral particles,due to their small particle size and low mass,face challenges in achieving sufficient mineralization with bubbles during flotation,resulting in significantly reduced recoveries and limiting the efficient utilization of mineral resources.To address this issue,researchers have proposed strategies to increase the apparent diameter of particles to enhance the collision probability between particles and bubbles,thereby improving mineralization efficiency.This approach has been partially implemented through traditional techniques such as carrier flotation,oil agglomeration,and flocculation flotation.However,these traditional methods encounter challenges in practical applications,including complex processes,high costs,and poor operational stability,which limit their use in large-scale industrial production.In recent years,hydrophobic aggregation technologies,enhanced by micro-nano bubbles and external fields(such as ultrasonic standing wave fields and magnetic fields),have gained widespread attention.These emerging technologies have significantly improved the efficiency of fine-grained mineral-bubble interactions by introducing innovative mineralization mechanisms.Micro-nano bubbles,with their high specific surface area and unique physicochemical properties,enhance the aggregation of fine mineral particles and their attachment to flotation bubbles,thereby significantly improving flotation recoveries.Ultrasonic standing wave field technology drives particle aggregation through acoustic radiation forces,increasing the apparent diameter of particles and further optimizing mineralization efficiency.Magnetic field technology,by introducing magnetic particles,enables fine minerals to form larger aggregates under the influence of an external magnetic field,thereby increasing the collision probability between particles and bubbles and significantly enhancing flotation efficiency.These emerging technologies not only improve flotation recoveries but also demonstrate significant advantages in operational sta
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222