Expected Residual Minimization Method for Stochastic Tensor Variational Inequalities  

在线阅读下载全文

作  者:Tong-Tong Shang Guo-Ji Tang 

机构地区:[1]School of Mathematics and Statistics,Guizhou University,Guiyang,550025,Guizhou,China [2]School of Mathematics and Physics,Guangxi Minzu University,Nanning,530006,Guangxi,China [3]School of Mathematics and Physics,Center for Applied Mathematics of Guangxi,Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,Guangxi Minzu University,Nanning,530006,Guangxi,China

出  处:《Journal of the Operations Research Society of China》2024年第4期1048-1071,共24页中国运筹学会会刊(英文)

基  金:supported by the National Natural Science Foundation of China(No.11961006);Guangxi Natural Science Foundation(No.2020GXNSFAA159100).

摘  要:The goal of this paper is to introduce and investigate a model called the stochastic tensor variational inequality(denoted by STVI),which is a natural extension of the stochastic linear complementarity problem and the stochastic affine variational inequality.Firstly,the STVI is transformed into an expected residual minimization(ERM)problem involved the regularized gap function.Then,the properties of the ERM problem are investigated.Finally,a discrete approximation of ERM problem is obtained by quasi-Monte Carlo method.The convergence of optimal solutions and stationary points of the approximation problem are analyzed as well.

关 键 词:Stochastic tensor variational inequality Strongly monotone tensor Level set Convergence 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象