检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘琦 宁立远 戴华林 王家兴 东尧 Liu Qi;Ning Liyuan;Dai Hualin;Wang Jiaxing;Dong Yao(School of Computer and Information Engineering,Tianjin Chengjian University,Tianjin 300384,China)
机构地区:[1]天津城建大学计算机与信息工程学院,天津300384
出 处:《国外电子测量技术》2024年第11期116-126,共11页Foreign Electronic Measurement Technology
基 金:天津市科技计划项目(23YDTPJC00350)资助。
摘 要:结构健康检测指通过实时或周期性监测评估工程结构的健康状态,深度学习方法因能从原始数据中提取高层特征而备受关注。针对实际应用中损伤类别的多样性,缺乏对损伤状态进行定量分析,提出了部分跳跃卷积自编码器损伤判断量化方法。使用卷积自编码器处理结构响应,将高维数据降维至低维特征空间,通过重构误差设定损伤指标,以判断健康状态;基于低维特征构建损伤系数,实现结构损伤量化。利用国际结构控制协会与美国土木工程协会(IASC-ASCE)IASC-ASCI和IASC-ASCEII数据集验证了算法在损伤判断和量化方面的有效性。实验结果表明,损伤指标对大部分损伤状态的判定准确率达到100%,个别损伤状态下的准确率为96%,对不同损伤状态的量化均符合预期。Structural health monitoring refers to the evaluation of the health condition of engineering structures through real-time or periodic monitoring.Deep learning methods have gained attention due to their ability to extract high-level features from raw data.However,the diversity of damage types in practical applications and the lack of quantitative analysis for damage states remain challenging.In this paper,a partial skip-connected convolutional autoencoder-based approach for damage assessment and quantification is proposed.This method utilizes a convolutional autoencoder to process structural responses,reducing high-dimensional data to a low-dimensional feature space.A damage index is defined based on reconstruction error to assess health status,while a damage coefficient constructed from the lowdimensional features enables quantitative damage assessment.The effectiveness of the algorithm in damage detection and quantification is validated using the IASC-ASCE benchmark structures I and II datasets.Experimental results demonstrate that the damage index achieves 100%accuracy in identifying most damage states,with 96%accuracy in certain specific cases,and that the quantification aligns well with expected values across different damage states.
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置] TN911.72[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143