改进PSO-XGBoost的连铸定重预测  

Forecasting of continuous casting slab weight based on improved PSO-XGBoost

在线阅读下载全文

作  者:高峰 李新杰[1,2,3,4] 符海东 彭浩[5] GAO Feng;LI Xin-jie;FU Hai-dong;PENG Hao(College of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065,China;Big Data Science and Engineering Research Institute,Wuhan University of Science and Technology,Wuhan 430065,China;Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System,Wuhan University of Science and Technology,Wuhan 430065,China;Research Institute,Wisdri Cctec Engineering CO.,LTD.,Wuhan 430223,China;School of Civil Engineering and Architecture,Wuhan Polytechnic University,Wuhan 430023,China)

机构地区:[1]武汉科技大学计算机科学与技术学院,湖北武汉430065 [2]武汉科技大学大数据科学与工程研究院,湖北武汉430065 [3]武汉科技大学湖北省智能信息处理与实时工业系统重点实验室,湖北武汉430065 [4]中冶南方连铸技术工程有限责任公司研究院,湖北武汉430223 [5]武汉轻工大学土木工程与建筑学院,湖北武汉430023

出  处:《计算机工程与设计》2025年第1期290-297,共8页Computer Engineering and Design

基  金:国家自然科学基金项目(U1836118);武汉市重点研发计划基金项目(2022012202015070);武汉东湖新技术开发区“揭榜挂帅”基金项目(2022KJB126)。

摘  要:为实现连铸坯有效定重预测,避免在连铸生产中产生质量缺陷和资源浪费,根据真实方坯生产数据,提出一种基于改进粒子群算法优化XGBoost的连铸定重预测模型。针对粒子群算法全局寻优精度较低等缺点进行改进,主要采用反向学习策略优化种群初始分布提高算法优化效率,根据进化状态自适应调整惯性权重,匹配粒子当前搜索状态,同时使用突变策略使粒子突破局部收敛。数值实验结果表明,改进算法收敛速度更快,精度更高,验证了良好性能。将其应用到XGBoost中优化模型超参数,连铸坯定重预测精度获得提升。To realize effective weight prediction of continuous casting slabs and avoid quality defects and waste of resources in continuous casting production,a continuous casting fixed weight prediction model based on improved particle swarm optimization algorithm optimized XGBoost was proposed using real billet production data.Among them,to improve the shortcomings of the particle swarm optimization algorithm such as low global optimization accuracy,the reverse learning strategy was mainly used to optimize the initial distribution of the population to improve the optimization efficiency of the algorithm,and the inertia weight was adaptively adjusted according to the evolution state to match the current search state of the particles.The mutation strategy made particles break out of local convergence.Numerical experiments show that the improved algorithm has higher convergence speed and higher precision,which verifies the good performance.It is applied to XGBoost to optimize the hyperparameters of the model,and the prediction accuracy of continuous casting slab fixed weight is improved.

关 键 词:连铸 定重预测 XGBoost 粒子群优化 进化状态 自动机器学习 超参数优化 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象