检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朴虹奕 周湘山 徐劲草 张磊 秦甦 PIAO Hongyi;ZHOU Xiangshan;XU Jingcao;ZHAN Lei;QIN Su(PowerChina Chengdu Engineering Corporation Limited,Chengdu Sichuan 611130)
机构地区:[1]中国电建集团成都勘测设计研究院有限公司,四川成都611130
出 处:《四川水力发电》2024年第6期116-119,133,共5页Sichuan Hydropower
摘 要:通过使用R语言编程软件对原始数据的归一化处理和参数的筛选与成分相关性分析,建立了基于机器学习5种算法预测模型。结果表明:通过对模型的训练和修正,5种基于机器学习的水库下泄水温预测模型中,支持向量机模型的效果最佳,模型预测值的准确度可以达到0.78。支持向量机水库水温预测模型可以实现对水温的监测和控制,从而对水库的生态环境影响及时采取优化措施,并进行结果的预测验证。By using R language programming software to first normalize the original data,screen parameters and screen component correlation,five prediction models based on machine learning algorithms have been established.The results show that through the training and modification of the model,the support vector machine model has the best effect among the 5 kinds of machine learning-based prediction models of reservoir drainage water temperature,and the accuracy of this model prediction value has reached to 0.78.Support vector machine reservoir water temperature prediction model can not only realize the monitoring and control of water temperature,but also to take timely optimization measures and to get immediate validation for the ecological environment of the reservoir,and verify the prediction results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.164.253