检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐志共[1] 钱炜祺[1] 何磊[1,2] 林杰 黄铭基 赵暾 王岳青 袁先旭 TANG Zhigong;QIAN Weiqi;HE Lei;LIN Jie;HUANG Mingji;ZHAO Tun;WANG Yueqing;YUAN Xianxu(China Aerodynamics Research and Development Center,Mianyang 621000,China;State Key Laboratory of Aerodynamics,Mianyang 621000,China;College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China)
机构地区:[1]中国空气动力研究与发展中心,绵阳621000 [2]空天飞行空气动力科学与技术全国重点实验室,绵阳621000 [3]国防科技大学计算机学院,长沙410073
出 处:《空气动力学学报》2024年第12期1-11,I0001,共12页Acta Aerodynamica Sinica
摘 要:大模型技术作为人工智能领域发展最为迅速的方向,在自然语言处理和计算机视觉等领域取得巨大成功,也在朝着赋能科学研究领域蓬勃发展,已成为空气动力学领域研究的全新手段,在指导加速空气动力实验与计算、辅助空气动力理论和知识发现等方面存在巨大潜力。本文首先对大模型进行了概述,分析了大模型的4个主要特征,并将大模型分为大语言模型、视觉大模型和科学大模型。其次,初步给出了空气动力学领域科学计算大模型的概念内涵,从流场预测、湍流建模、气动性能预测、气动外形设计等方面介绍了研究现状。然后,从模型架构、反馈对齐、大规模气动数据的生成等角度对空气动力学领域大模型的关键技术进行了深入分析和探讨。最后,对空气动力学领域大模型未来的重点发展方向,包括构建统一的预训练基础模型、融入气动知识支撑科学发现、发展领域智能体等,进行了展望。As one of the fastest-growing directions in artificial intelligence,the large model technology has achieved remarkable success in realms such as natural language processing and computer vision and is vigorously expanding its influence in empowering scientific research.It has also become a powerful tool in aerodynamics,possessing significant potential to expedite aerodynamic experiments and computations and assist aerodynamic theory and knowledge discovery.This paper begins by presenting an overview of large models for language processing,computer vision,and scientific computing.Subsequently,the paper outlines the conceptual framework of large models for scientific computing in aerodynamics,reviewing the current research progress from various perspectives,including flow field prediction,turbulence modeling,aerodynamic performance prediction,and aerodynamic configuration design.Furthermore,key techniques of large models in aerodynamics are discussed in-depth from the perspectives of model architecture,feedback alignment,and the generation of big aerodynamic data.Lastly,developing directions of large models in aerodynamics are prospected,including the construction of a unified pre-trained foundational model,the integration of aerodynamic knowledge to support scientific discoveries,and the development of discipline-specific agents.
关 键 词:空气动力学 人工智能 大模型 深度学习 流体力学
分 类 号:V211[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3